河北省唐山市林西中学2022-2023学年数学八年级第二学期期末统考模拟试题含解析_第1页
河北省唐山市林西中学2022-2023学年数学八年级第二学期期末统考模拟试题含解析_第2页
河北省唐山市林西中学2022-2023学年数学八年级第二学期期末统考模拟试题含解析_第3页
河北省唐山市林西中学2022-2023学年数学八年级第二学期期末统考模拟试题含解析_第4页
河北省唐山市林西中学2022-2023学年数学八年级第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,圆柱形玻璃杯,高为,底面周长为,在杯内离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁到达蜂蜜的最短距离为().A.15 B. C.12 D.182.将不等式<2的解集表示在数轴上,正确的是()A. B.C. D.3.下列方程中是关于的一元二次方程的是()A. B. C. D.4.已知是一次函数的图象上的两个点,则的大小关系是()A. B. C. D.不能确定5.如图,在直角坐标系中,一次函数的图象与正比例函数的图象交于点,一次函数的图象为,且,,能围成三角形,则在下列四个数中,的值能取的是()A.﹣2 B.1 C.2 D.36.一种药品经过两次降价,药价从每盒60元下调至每盒48.6元,则平均每次降价的百分比是()A. B. C. D.7.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数 B.方差 C.众数 D.中位数8.直线与直线的交点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.2 D.4.510.如图,菱形ABCD中,E.F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.24二、填空题(每小题3分,共24分)11.有一组数据:.将这组数据改变为.设这组数据改变前后的方差分别是,则与的大小关系是______________.12.如果的值为负数,则x的取值范围是_____________.13.如图所示,已知AB=6,点C,D在线段AB上,AC=DB=1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.14.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P、Q分别是BD、AB上的动点,则AP+PQ的最小值为______.15.某班的中考英语口语考试成绩如表:考试成绩/分3029282726学生数/人3151363则该班中考英语口语考试成绩的众数比中位数多_____分.16.反比例函数y=图象上有两个点(x1,y1),(x2,y2),其中0<x1<x2,则y1,y2的大小关系是_____(用“<“连接).17.分解因式:18.如图,AO=OC,BD=16cm,则当OB=___cm时,四边形ABCD是平行四边形.三、解答题(共66分)19.(10分)已知关于x的一元二次方程.(1)当m为何值时,方程有两个不相等的实数根;(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.20.(6分)某中学举办“网络安全知识答题竞赛”,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)七年级a85bS七年级2八年级85c100160(1)根据图示填空:a=,b=,c=;(2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?(3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.21.(6分)如图,在□ABCD中,点E是边BC的中点,连接AE并延长,交DC的延长线于点F,连接AC,BF.(1)求证:△ABE≌△FCE;(2)当四边形ABFC是矩形时,当∠AEC=80°,求∠D的度数.22.(8分)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.23.(8分)如图,四边形ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求证:DF=FE;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长;(3)在(2)的条件下,求四边形ABED的面积.24.(8分)如图,平行四边形ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,求△BOC的周长为多大?25.(10分)如图,函数与的图象交于.(1)求出,的值.(2)直接写出不等式的解集;(3)求出的面积26.(10分)小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分)的关系如图所示,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?

参考答案一、选择题(每小题3分,共30分)1、A【解析】

过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.【详解】解:沿过A的圆柱的高剪开,得到矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,

∵AE=A′E,A′P=AP,

∴AP+PC=A′P+PC=A′C,

∵CQ=×18cm=9cm,A′Q=12cm-4cm+4cm=12cm,

在Rt△A′QC中,由勾股定理得:A′C==15cm,

故答案为A.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,关键是找出最短路线.2、D【解析】

先解不等式得到解集,然后利用数轴上的表示方法即可完成解答.【详解】解:解不等式<2得:x<1;根据不等式解集在数轴上的表示方法,得:,故答案为D.【点睛】本题考查了解不等式及其在数轴上表示解集;其中掌握在数轴上表示解集的方法是解题的关键,即:在表示解集时,“≥”和“≤”要用实心圆点表示;“<”和“>”要用空心圆点表示.3、D【解析】

只含有一个未知数,并且未知数的项的最高次数是2,且等号两边都是整式的方程是一元二次方程,根据定义依次判断即可得到答案.【详解】A、等式左边不是整式,故不是一元二次方程;B、中a=0时不是一元二次方程,故不符合题意;C、整理后的方程是2x+5=0,不符合定义故不是一元二次方程;D、整理后的方程是,符合定义是一元二次方程,故选:D.【点睛】此题考查一元二次方程的定义,正确理解此类方程的特点是解题的关键.4、C【解析】

将点的坐标代入解析式求得y1=1-1=0,y1=-1-1=-1,然后进行大小比较即可.【详解】解:∵P1(-1,y1)、P1(1,y1)是y=-x-1的图象上的两个点,∴y1=1-1=0,y1=-1-1=-1,∵0>-1,∴y1>y1.故选:C.【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解答此题的关键.5、C【解析】

把M(m,3)代入一次函数y=-2x+5得到M(1,3),求得l2的解析式为y=3x,根据l1,l2,l3能围成三角形,l1与l3,l3与l2有交点且一次函数y=kx+2的图象不经过M(1,3),于是得到结论.【详解】解:把M(m,3)代入一次函数y=-2x+5得,可得m=1,

∴M(1,3),

设l2的解析式为y=ax,

则3=a,

解得a=3,

∴l2的解析式为y=3x,

∵l1,l2,l3能围成三角形,

∴l1与l3,l3与l2有交点且一次函数y=kx+2的图象不经过M(1,3),

∴k≠3,k≠-2,k≠1,

∴k的值能取的是2,

故选C.【点睛】本题考查了两直线平行或相交问题,一次函数图象及性质;熟练掌握函数解析式的求法,直线平行的条件是解题的关键.6、B【解析】

设平均每次降价的百分比是x,则第一次降价后的价格为60×(1-x)元,第二次降价后的价格在第一次降价后的价格的基础上降低的,为60×(1-x)×(1-x)元,从而列出方程,然后求解即可.【详解】解:设平均每次降价的百分比是,根据题意得:,解得:,(不合题意,舍去),答:平均每次降价的百分比是10%;故选:B.【点睛】本题考查了一元二次方程的应用,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7、B【解析】

平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.8、C【解析】

判断出直线可能经过的象限,即可求得它们的交点不可能在的象限.【详解】解:因为y=−x+4的图象经过一、二、四象限,所以直线y=x+m与y=−x+4的交点不可能在第三象限,故选:C.【点睛】本题考查一次函数的图象和系数的关系,根据一次函数的系数k,b与0的大小关系判断出直线经过的象限即可得到交点不在的象限.9、C【解析】【分析】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,由PE+PM=PE′+PM=E′M知点P、M即为使PE+PM取得最小值的点,利用S菱形ABCD=AC•BD=AB•E′M求得E′M的长即可得答案.【详解】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值的点,则有PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB=,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选C.【点睛】本题考查了轴对称——最短路径问题,涉及到菱形的性质、勾股定理等,确定出点P的位置是解题的关键.10、D【解析】

根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.【详解】、分别是、的中点,是的中位线,,菱形的周长.故选:.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

设数据,,,,的平均数为,根据平均数的定义得出数据,,,,的平均数也为,再利用方差的定义分别求出,,进而比较大小.【详解】解:设数据,,,,的平均数为,则数据,,,,的平均数也为,,,.故答案为.【点睛】本题考查方差的定义:一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12、.【解析】

根据分式的值为负数,分子的最小值为1,得出分母小于0列出关于x的不等式,求出不等式的解集即可得到x的范围.【详解】∵,,∴,解得.故答案为【点睛】本题考查分式的值.分式的值要为负,那么分母和分子必须异号,在本题中分子已经为正,那么分母只能为负.13、1【解析】

分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN==1,∴点G移动路径的长是1,故答案为:1.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.14、2【解析】

作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.【详解】解:作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.

∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,

∴P′Q′=P′H,

∴AP′+P′Q′=AP′+P′H=AH,

根据垂线段最短可知,PA+PQ的最小值是线段AH的长,

∵AB=4,∠AHB=90°,∠ABH=45°,

∴AH=BH=2,

故答案为:2.【点睛】本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.15、3【解析】这组数出现次数最多的是3;∴这组数的众数是3.∵共42人,∴中位数应是第23和第22人的平均数,位于最中间的数是2,2,∴这组数的中位数是2.∴该班中考英语口语考试成绩的众数比中位数多3﹣2=3分,故答案为3.【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.16、.【解析】

根据反比例函数的k确定图象在哪两个象限,再根据(x1,y1),(x2,y2),其中,确定这两个点均在第一象限,根据在第一象限内y随x的增大而减小的性质做出判断.【详解】解:反比例函数y=图象在一、三象限,(x1,y1),(x2,y2)在反比例函数y=图象上,且,因此(x1,y1),(x2,y2)在第一象限,∵反比例函数y=在第一象限y随x的增大而减小,∴,故答案为:.【点睛】本题考查了反比例函数的增减性,熟悉反比例函数的图象与性质是解题的关键.17、【解析】试题分析:首先提取公因式b,然后根据完全平方公式进行因式分解.原式==考点:(1)因式分解;(2)提取公因式法;(3)完全平方公式18、1【解析】

根据对角线互相平分的四边形是平行四边形可得OB=1cm时,四边形ABCD是平行四边形.【详解】当OB=1cm时,四边形ABCD是平行四边形,∵BD=16cm,OB=1cm,∴BO=DO,又∵AO=OC,∴四边形ABCD是平行四边形,故答案为1.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.三、解答题(共66分)19、(1)m>﹣;(2)m=﹣1.【解析】

(1)根据方程的系数结合根的判别式,即可得出△=1m+17>0,解之即可得出结论;(2)设方程的两根分别为a、b,根据根与系数的关系结合菱形的性质,即可得出关于m的一元二次方程,解之即可得出m的值,再根据a+b=﹣2m﹣1>0,即可确定m的值.【详解】解:(1)∵方程有两个不相等的实数根,∴△==1m+17>0,解得:m>﹣,∴当m>﹣时,方程有两个不相等的实数根.(2)设方程的两根分别为a、b,根据题意得:a+b=﹣2m﹣1,ab=.∵2a、2b为边长为5的菱形的两条对角线的长,∴==2m2+1m+9=52=25,解得:m=﹣1或m=2.∵a>0,b>0,∴a+b=﹣2m﹣1>0,∴m=﹣1.若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m的值为﹣1.【点睛】本题考查了根的判别式、根与系数的关系、菱形的性质以及解一元二次方程,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=1m+17>0;(2)根据根与系数的关系结合菱形的性质,找出关于m的一元二次方程.20、(1)85,85,80;(2)七年级决赛成绩较好;(3)七年级代表队选手成绩比较稳定.【解析】

(1)根据平均数、中位数、众数的概念分析计算即可;(2)根据图表可知七八年级的平均分相同,因此结合两个年级的中位数来判断即可;(3)根据方差的计算公式来计算即可,然后根据“方差越小就越稳定”的特点来判断哪个队成绩稳定即可.【详解】解:(1)七年级的平均分a=,众数b=85,八年级选手的成绩是:70,75,80,100,100,故中位数c=80;故答案为85,85,80;(2)由表格可知七年级与八年级的平均分相同,七年级的中位数高,故七年级决赛成绩较好;(3)S2七年级=(分2),S2七年级<S2八年级∴七年级代表队选手成绩比较稳定.【点睛】本题主要考查了平均数、中位数、众数、方差的概念及统计意义,熟练掌握其概念是解题的关键.21、(1)见解析;(2)40°【解析】

(1)根据矩形性质得出AB∥DC,推出∠1=∠2,根据AAS证两三角形全等即可;(2)由四边形ABFC是矩形可得AE=BE,由外角额性质可求出∠ABE=∠BAE=40°,然后根据平行四边形的对角相等即可求出∠D的度数.【详解】解:(1)如图.∵四边形ABCD是平行四边形,∴AB∥DC

AB∥DF,∴∠1=∠2,∵点E是BC的中点,∴BE=CE.在△ABE和△FCE中,∠1=∠2,BE=CE,∠3=∠4,∴△ABE≌△FCE(AAS).(2)∵四边形ABFC是矩形,∴AF=BC,AE=AF,BE=BC,∴AE=BE,∴∠ABE=∠BAE,∵∠AEC=80°,∴∠ABE=∠BAE=40°,∵四边形ABCD是平行四边形,∴∠D=∠ABE=40°.点睛:本题考查了平行四边形的性质,平行线的性质,全等三角形的判定,矩形的性质,三角形外角的性质,熟练掌握平行四边形的性质和矩形的性质还是解答本题的关键.22、(1)50;1;(2)2;3;15;(3)608人.【解析】

(1)根据条形统计图即可得出样本容量:4+2+12+3+8=50(人);根据扇形统计图得出m的值:;(2)利用平均数、中位数、众数的定义分别求出即可.(3)根据样本中捐款3元的百分比,从而得出该校本次活动捐款金额为3元的学生人数.【详解】解:(1)根据条形图4+2+12+3+8=50(人),

m=30-20-24-2-8=1;故答案为:50;1.(2)∵,∴这组数据的平均数为:2.∵在这组样本数据中,3出现次数最多为2次,∴这组数据的众数为:3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:,(3)∵在50名学生中,捐款金额为3元的学生人数比例为1%,∴由样本数据,估计该校1900名学生中捐款金额为3元的学生人数有1900×1%=608人.∴该校本次活动捐款金额为3元的学生约有608人.【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.23、(1)证明见解析(2)(3)【解析】

(1)可过点C延长DC交BE于M,可得C,F分别为DM,DE的中点;(2)在直角三角形ADC中利用勾股定理求解即可;(3)求四边形ABED的面积,可分解为求梯形ABMD与三角形DME的面积,然后求两面积之和即可.【详解】(1)证明:延长DC交BE于点M,∵BE∥AC,AB∥DC,∴四边形ABMC是平行四边形,∴CM=AB=DC,C为DM的中点,BE∥AC,∴CF为△DME的中位线,∴DF=FE;(2)解:由(1)得CF是△DME的中位线,故ME=2CF,又∵AC=2CF,四边形ABMC是平行四边形,∴BE=2BM=2ME=2AC,又∵AC⊥DC,∴在Rt△ADC中,AC=AD•sin∠ADC=a,∴BE=a.(3)可将四边形ABED的面积分为两部分,梯形ABMD和△DME,在Rt△ADC中:DC=,∵CF是△DME的中位线,∴CM=DC=,∵四边形ABMC是平行四边形,∴AB=MC=,BM=AC=a,∴梯形ABMD面积为:(+a)××=;由AC⊥DC和BE∥AC可证得△DME是直角三角形,其面积为:××a=,∴四边形ABED的面积为+=.【点睛】本题结合三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论