河南省郑州市名校2022-2023学年数学八年级第二学期期末综合测试模拟试题含解析_第1页
河南省郑州市名校2022-2023学年数学八年级第二学期期末综合测试模拟试题含解析_第2页
河南省郑州市名校2022-2023学年数学八年级第二学期期末综合测试模拟试题含解析_第3页
河南省郑州市名校2022-2023学年数学八年级第二学期期末综合测试模拟试题含解析_第4页
河南省郑州市名校2022-2023学年数学八年级第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图1反映的过程是:矩形ABCD中,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,S△ABP=y.则矩形ABCD的周长是()A.6 B.12 C.14 D.152.下列命题正确的是().A.任何事件发生的概率为1B.随机事件发生的概率可以是任意实数C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列命题中,错误的是().A.矩形的对角线互相平分且相等 B.对角线互相垂直的四边形是菱形C.正方形的对角线互相垂直平分 D.等腰三角形底边上的中点到两腰的距离相等4.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.使二次根式x-1的有意义的x的取值范围是()A.x>0 B.x>1 C.x≥1 D.x≠16.如图,将△ABC绕点A按顺时针方向旋转120°得到△ADE,点B的对应点是点E,点C的对应点是点D,若∠BAC=35°,则∠CAE的度数为()A.90° B.75° C.65° D.85°7.一同学将方程化成了的形式,则m、n的值应为()A.m=1.n=7 B.m=﹣1,n=7 C.m=﹣1,n=1 D.m=1,n=﹣78.如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.∠ABC=∠ADC,∠BAD=∠DCB B.AB∥DC,AB=DCC.AB∥DC,AD∥BC D.AC=BDC9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=或t=,其中正确的结论有()A.1个 B.2个 C.3个 D.4个10.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形二、填空题(每小题3分,共24分)11.因式分解:____________.12.如图,将正方形OABC放在平面直角坐标系中,O是坐标原点,点A的坐标是(2,3),则C点坐标是_____.13.如图,矩形中,,延长交于点,延长交于点,过点作,交的延长线于点,,则=_________.14.若关于的方程有增根,则的值是___________.15.一次函数y=(2m-6)x+5中,y随x的增大而减小,则m的取值范围是________.16.如图,在边长为6的正方形ABCD中,点F为CD上一点,E是AD的中点,且DF=1.在BC上找点G,使EG=AF,则BG的长是___________17.直线与轴的交点坐标是________________.18.如图,在R△ABC中,∠ABC=90°,AB=22,BC=1,BD是AC边上的中线,则BD=________。三、解答题(共66分)19.(10分)一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果的单价是多少元?(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a的最大值.20.(6分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:(1)本次抽测的男生人数为,图①中m的值为;(2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.21.(6分)阅读下列解题过程,并解答后面的问题:如图,在平面直角坐标系中,,,C为线段AB的中点,求C的坐标.解:分别过A,C作x轴的平行线,过B,C作y轴的平行线,两组平行线的交点如图1.设C的坐标为,则D、E、F的坐标为,,由图可知:,∴C的坐标为问题:(1)已知A(-1,4),B(3,-2),则线段AB的中点坐标为______(2)平行四边形ABCD中,点A、B、C的坐标分别为(1,-4),(0,2),(5,6),求D的坐标.(3)如图2,B(6,4)在函数的图象上,A的坐标为(5,2),C在x轴上,D在函数的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.22.(8分)已知三角形纸片,其中,,点分别是上的点,连接.(1)如图1,若将纸片沿折叠,折叠后点刚好落在边上点处,且,求的长;(2)如图2,若将纸片沿折叠,折叠后点刚好落在边上点处,且.试判断四边形的形状,并说明理由;求折痕的长.23.(8分)自年月日日起,合肥市进入冰雪灾害天气,如图,一棵大树在离地面米处折断,树的顶端落在离树干底部米处,求这棵树折断之前的高度.24.(8分)如图,在平面直角坐标系中,直线的表达式为,点,的坐标分别为,,直线与直线相交于点.(1)求直线的表达式;(2)求点的坐标;25.(10分)解方程:x(x﹣3)=1.26.(10分)某校组织春游活动,提供了A、B、C、D四个景区供学生选择,并把选择最多的景区作为本次春游活动的目的地。经过抽样调查,并将采集的数据绘制成如下两幅不完整的统计图,请根据图①、②所提供的信息,解答下列问题:(1)本次抽样调查的学生有______名,其中选择景区A的学生的频率是______:(2)请将图②补充完整:(3)若该校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生选择景区C?(要有解答过程)

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:结合图象可知,当P点在AC上,△ABP的面积y逐渐增大,当点P在CD上,△ABP的面积不变,由此可得AC=5,CD=4,则由勾股定理可知AD=3,所以矩形ABCD的周长为:2×(3+4)=1.考点:动点问题的函数图象;矩形的性质.点评:本题考查的是动点问题的函数图象,解答本题的关键是根据矩形中三角形ABP的面积和函数图象,求出AC和CD的长.2、C【解析】

根据随机事件、不可能事件的定义和概率的性质判断各选项即可.【详解】A中,只有必然事件概率才是1,错误;B中,随机事件的概率p取值范围为:0<p<1,错误;C中,可能性很小的事件,是有可能发生的,正确;D中,不可能事件一定不发生,错误故选:C【点睛】本题考查事件的可能性,注意,任何事件的概率P一定在0至1之间.3、B【解析】

根据矩形,正方形的性质判断A,C,根据菱形的判定方法判断B,根据等腰三角形的性质判断D.【详解】解:A、矩形的对角线互相平分且相等,故正确;B、对角线互相垂直平分的四边形是菱形,故B错误;C、正方形的对角线互相垂直平分,正确;D、等腰三角形底边上的中点到两腰的距离相等,正确,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是能够了解矩形,正方形的性质,等腰三角形的性质,菱形的判定,掌握相关知识点是关键.4、B【解析】

根据各象限的点的坐标的符号特征判断即可.【详解】∵-3<0,2>0,∴点P(﹣3,2)在第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.5、C【解析】试题分析:要使x-1有意义,必须x-1≥0,解得:x≥1.故选C.考点:二次根式有意义的条件.6、D【解析】

由题意可得∠BAE是旋转角为120°且∠BAC=35°,可求∠CAE的度数.【详解】∵将△ABC绕点A按顺时针方向旋转120°得到△ADE∴∠BAE=120°且∠BAC=35°∴∠CAE=85°故选D.【点睛】本题考查了旋转的性质,关键是熟练运用旋转的性质解决问题.7、B【解析】

先把(x+m)1=n展开,化为一元二次方程的一般形式,再分别使其与方程x1-4x-3=0的一次项系数、二次项系数及常数项分别相等即可.【详解】解:∵(x+m)1=n可化为:x1+1mx+m1-n=0,∴,解得:故选:B.【点睛】此题比较简单,解答此题的关键是将一元二次方程化为一般形式,再根据题意列出方程组即可.8、D【解析】分析:本题根据平行四边形的判定定理即可得出答案.详解:A根据两组对角相等可以得出平行四边形;B根据一组对边平行且相等可以得出平行四边形;C根据两组对边分别平行可以得出平行四边形;D无法判定,故选D.点睛:本题主要考查的是平行四边形的判定定理,属于基础题型.明确判定定理是解决这个问题的关键.9、A【解析】

由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为40,可求得t,可得出答案.【详解】由图象可知A、B两城市之间的距离为300km,故①正确;甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故②错误;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,把y=150代入y甲=60t,可得:t=2.5,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(2.5,150)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;令|y甲﹣y乙|=40,可得|60t﹣100t+100|=40,即|100﹣40t|=40,当100﹣40t=40时,可解得t=,当100﹣40t=﹣40时,可解得t=,又当t=时,y甲=40,此时乙还没出发,当t=时,乙到达B城,y甲=260;综上可知当t的值为或或或t=时,两车相距40千米,故④不正确;故选A.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.10、A【解析】

已知AC和BD是对角线,取各自中点,则对角线互相平分(即AO=CO,BO=DO)的四边形是平行四边形.【详解】解:由已知可得AO=CO,BO=DO,所以四边形ABCD是平行四边形,依据是对角线互相平分的四边形是平行四边形.故选:A.【点睛】本题主要考查了平行四边形的判定,熟记平行四边形的判定方法是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

先提公因式m,再利用平方差公式即可分解因式.【详解】解:,故答案为:.【点睛】本题考查了利用提公因式法和公式法因式分解,解题的关键是找出公因式,熟悉平方差公式.12、(﹣3,2).【解析】

过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.【详解】过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,如图所示:∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=3,CE=OD=2,∵点C在第二象限,∴点C的坐标为(﹣3,2).故答案为(﹣3,2).【点睛】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键.13、【解析】

通过四边形ABCD是矩形以及,得到△FEM是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.【详解】解:如图,设NE交AD于点K,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠MFE=∠FCB,∠FME=∠EBC∵,∴△BCE为等边三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC,∴∠FEM=∠MFE=∠FME=60°,∴△FEM是等边三角形,FM=FE=EM=2,∵EN⊥BE,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt△KME中,KE=,∴NE=NK+KE=6+,∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+,∴BE=,∴BC=BE=,故答案为:【点睛】本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.14、1【解析】解:方程两边都乘(x﹣2),得:x﹣1=m.∵方程有增根,∴最简公分母x﹣2=0,即增根是x=2,把x=2代入整式方程,得m=1.故答案为:1.点睛:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15、m<1【解析】解:∵y随x增大而减小,∴k<0,∴2m-6<0,∴m<1.16、1或2【解析】

过E作EH⊥BC于H,取,根据平行线分线段成比例定理得:BH=CH=3,证明Rt△ADF≌Rt△EHG,得GH=DF=1,可得BG的长,再运用等腰三角形的性质可得BG及的长.【详解】解:如图:过E作EH⊥BC于H,取,则AB∥EH∥CD,∵E是AD的中点,∴BH=CH=3,∵四边形ABCD是正方形,∴AD=CD=EH,∠D=∠EHG=90°,∵EG=AF,∴Rt△ADF≌Rt△EHG(HL),∴GH=DF=1,∴BG=BH−GH=3−1=1;∵∴∴故答案为:1或2.【点睛】本题主要考查了全等三角形的判定与性质,正方形的性质,掌握全等三角形的判定与性质,正方形的性质是解题的关键.17、【解析】

根据一次函数的性质,与轴的交点即横坐标为0,代入即可得解.【详解】根据题意,得当时,,即与轴的交点坐标是故答案为.【点睛】此题主要考查一次函数的性质,熟练掌握,即可解题.18、1.5【解析】

利用勾股定理求出AC的长,再根据直角三角形斜边上的中线等于斜边的一半,就可求出BD的长.【详解】解:在Rt△ABC中,AC=A∵BD是AC边上的中线,∴AC=2BD∴BD=3÷2=1.5故答案为:1.5【点睛】本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.三、解答题(共66分)19、(1)水果店主购进第一批这种水果的单价是20元;(2)a的最大值是1.【解析】

(1)根据题意可以列出相应的分式方程,从而可以解答本题,注意分式方程要检验;(2)根据题意可以得到关于a的不等式,从而可以求得a的最大值.【详解】(1)设第一批水果的单价是x元,,解得,x=20,经检验,x=20是原分式方程的解,答:水果店主购进第一批这种水果的单价是20元;(2)由题意可得,,解得,a≤1,答:a的最大值是1.【点睛】本题考查分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式,利用分式方程和不等式的性质解答.20、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标.【解析】分析:(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可;(Ⅱ)根据平均数、众数、中位数的定义求解可得;(Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.详解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=×100%=1%,所以m=1.故答案为50、1;(Ⅱ)平均数为=5.16次,众数为5次,中位数为=5次;(Ⅲ)×350=2.答:估计该校350名九年级男生中有2人体能达标.点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21、(1)(1,1);(2)D的坐标为(6,0);(3)D(2,2)或D(−6,−2)、D(10,6).【解析】

(1)直接套用中点坐标公式,即可得出中点坐标;(2)根据AC、BD的中点重合,可得出,,代入数据可得出点D的坐标;(3)分类讨论,①当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标;②当AB为该平行四边形的一条对角线时,根据AB中点与CD中点重合,可得出点D坐标.【详解】解:(1)AB中点坐标为(,)即(1,1);(2)根据平行四边形的性质:对角线互相平分,可知AC、BD的中点重合,由中点坐标公式可得:,,代入数据得:,,解得:xD=6,yD=0,所以点D的坐标为(6,0);(3)①当AB为该平行四边形一边时,则CD∥AB,对角线为AD、BC或AC、BD;故可得:,或,,故可得yC−yD=yA−yB=2或yD−yC=yA−yB=−2,∵yC=0,∴yD=2或−2,代入到y=x+1中,可得D(2,2)或D(−6,−2).当AB为该平行四边形的一条对角线时,则CD为另一条对角线;,,∴yC+yD=yA+yB=2+4,∵yC=0,∴yD=6,代入到y=x+1中,可得D(10,6)综上,符合条件的D点坐标为D(2,2)或D(−6,−2)、D(10,6).【点睛】本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,难点在第三问,注意分类讨论,不要漏解,难度较大.22、(1);(2)边形是菱形,见解析,【解析】

(1)首先根据折叠的性质,得出AE=DE,AF=DF,然后根据等腰三角形三线合一的性质,得出∠AFE=90°,判定,再根据得出和的相似比为,即可得解;(2)①由折叠和平行的性质,得出,即可判定四边形是菱形;②首先过点作于点,由得出,得出,然后根据,得出,进而得出FN、EN,根据勾股定理,即可求出EF.【详解】(1)根据题意,得AE=DE,AF=DF∴根据等腰三角形三线合一的性质,得∠AFE=90°又∵∠EAF=∠BAC,∠AEF=∠ABC∴又∵,∴,∴和的相似比为即又∵,,∴(2)四边形是菱形由折叠的性质,得AE=EM,AF=FM,∠AEF=∠FEM,∠AFE=∠EFM又∵∴∠FEM=∠AFE∴∠AEF=∠AFE,∠FEM=∠EFM∴,∴四边形是菱形过点作于点∵∴∴∵,,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论