版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.点A(-3,-4)到原点的距离为()A.3 B.4 C.5 D.72.计算的结果为()A.2 B.-4 C.4 D.±43.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A. B. C. D.4.把一元二次方程2x2-3x-1=0配方后可得(
)A.x-322=114
B.x-3225.已知,四边形ABCD的对角线AC⊥BD,E,F,G,H分别是边AB,BC,CD,DA的中点,那么四边形EFGH是()A.平行四边形 B.矩形 C.菱形 D.正方形6.如图,点是正方形的边上一点,把绕点顺时针旋转到的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4 B. C.6 D.7.已知点(-1,y1),(1,y2),(-2,y3)都在直线y=-x上,则y1,y2,y3的大小关系是()A..y1>y2>y3 B.y1<y2<y3 C.y3>y1>y2 D.y3<y1<y28.如图,在△ABC中,点E,F分别是边BC上两点,ED垂直平分AB,FG垂直平分AC,连接AE,AF,若∠BAC=115°,则∠EAF的大小为()A.45° B.50° C.60° D.65°9.已知甲,乙两组数据的折线图如图所示,设甲,乙两组数据的方差分别为,,则与大小关系为()A. B.C. D.不能确定10.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.3cm B.4cm C.23cm D.二、填空题(每小题3分,共24分)11.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=1200时,四边形AEFD是正方形.其中正确的结论是.(请写出正确结论的番号).12.点C是线段AB的黄金分割点(AC>BC),若AC=2则AB⋅BC=______.13.如图,点B是反比例函数()图象上一点,过点B作x轴的平行线,交轴于点A,点C是轴上一点,△ABC的面积是2,则=______.14.若式子有意义,则x的取值范围是_____.15.正八边形的一个内角的度数是度.16.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=a,CE=b,H是AF的中点,那么CH的长是______.(用含a、b的代数式表示)17.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若BC=BD,则∠A=_____度.18.在中,,,将绕点A按顺时针方向旋转得到旋转角为,点B,点C的对应点分别为点D,点E,过点D作直线AB的垂线,垂足为F,过点E作直线AC的垂线,垂足为P,当时,点P与点C之间的距离是________.三、解答题(共66分)19.(10分)在“国学经典”主题比赛活动中,甲、乙、丙三位同学的三项比赛成绩如下表(单位:分).国学知识现场写作经典诵读甲867090乙868090丙868590(1)若“国学知识”、“现场写作”“经典诵读”分别按30%,20%,50%的比例计入该同学的比赛得分,请分别计算甲、乙两位同学的得分;(2)若甲同学的得分是80分,乙同学的得分是84分,则丙同学的得分是______分.20.(6分)如图,△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出把△ABC向下平移4个单位后的图形.(2)画出将△ABC绕原点O按顺时针方向旋转90°后的图形.(3)写出符合条件的以A、B、C、D为顶点的平行四边形的第四个顶点D的坐标.21.(6分)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)填空:甲厂的制版费是________千元,当x≤2(千个)时乙厂证书印刷单价是________元/个;(2)求出甲厂的印刷费y甲与证书数量x的函数关系式,并求出其证书印刷单价;(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元.22.(8分)已知:在正方形ABCD中,点H在对角线BD上运动(不与B,D重合)连接AH,过H点作HP⊥AH于H交直线CD于点P,作HQ⊥BD于H交直线CD于点Q.(1)当点H在对角线BD上运动到图1位置时,则CQ与PD的数量关系是______.(2)当H点运动到图2所示位置时①依据题意补全图形.②上述结论还成立吗?若成立,请证明.若不成立,请说明理由.(3)若正方形边长为,∠PHD=30°,直接写出PC长.23.(8分)小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况、他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.分组频数百分比600≤x<80025%800≤x<1000615%1000≤x<120045%922.5%1600≤x<18002合计40100%根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图;
(3)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?24.(8分)某个体户购进一批时令水果,20天销售完毕,他将本次的销售情况进行了跟踪记录,根据所记录的数据绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲,销售单价P(元/千克)与销售时间x(天)之间的关系如图乙.(1)求y与x之间的函数关系式.(2)分别求第10天和第15天的销售金额.(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?25.(10分)将平行四边形纸片按如图方式折叠,使点与重合,点落到处,折痕为.(1)求证:;(2)连结,判断四边形是什么特殊四边形?证明你的结论.26.(10分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100;九(2)班:89,93,93,93,95,96,96,98,98,1.通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100m939312九(2)班195np8.4(1)直接写出表中m、n、p的值为:m=______,n=______,p=______;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据点A的横纵坐标的绝对值与到原点的距离构成直角三角形,利用勾股定理求解即可.【详解】∵点A的坐标为(-3,-4),到原点O的距离:OA==5,
故选C.【点睛】本题考查了勾股定理,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.2、C【解析】
根据算术平方根的定义进行计算即可.【详解】解:=4,故选C.【点睛】本题主要考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.3、B【解析】
观察图形,利用中心对称图形的性质解答即可.【详解】选项A,新图形不是中心对称图形,故此选项错误;选项B,新图形是中心对称图形,故此选项正确;选项C,新图形不是中心对称图形,故此选项错误;选项D,新图形不是中心对称图形,故此选项错误;故选B.【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.4、C【解析】
方程移项后,方程两边除以2变形得到结果,即可判定.【详解】方程移项得:2x2﹣3x=1,方程两边除以2得:x2-32x=12,配方得:x2-32x+9故选C.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法是解答本题的关键.5、B【解析】
根据中位线定义得出EF=HG,EF∥HG,证明四边形EFGH为平行四边形,再根据矩形的判定法则即可判定【详解】∵E,F分别是边AB,BC的中点,∴EF=AC,EF∥AC,同理,HG=AC,HG∥AC,∴EF=HG,EF∥HG,∴四边形EFGH为平行四边形,∵F,G分别是边BC,CD的中点,∴FG∥BD,∴∠FGH=90°,∴平行四边形EFGH为矩形,故选:B.【点睛】此题考查三角形中位线的性质,矩形的判定,解题关键在于利用中位线的性质进行解答6、D【解析】
利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】绕点顺时针旋转到的位置.四边形的面积等于正方形的面积等于20,,,中,故选:.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.7、C【解析】
先根据直线y=-x判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y=-x,k=-1<0,∴y随x的增大而减小,又∵-1<-1<1,∴y3>y1>y1.故选:C.【点睛】本题考查的是正比例函数的增减性,即正比例函数y=kx(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.8、B【解析】
根据三角形内角和定理得到∠B+∠C=65°,根据线段垂直平分线的性质得到EA=EB,FA=FC,根据等腰三角形的性质得到∠EAB=∠B,∠FAC=∠C,结合图形计算即可.【详解】解:∵∠BAC=115°,∴∠B+∠C=180°-115°=65°,∵ED垂直平分AB,FG垂直平分AC,∴EA=EB,FA=FC,∴∠EAB=∠B,∠FAC=∠C,∴∠EAB+∠FAC=∠B+∠C=65°,∴∠EAF=∠BAC-(∠EAB+∠FAC)=50°,故选:B.【点睛】本题考查的是线段的垂直平分线的性质、等腰三角形的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9、A【解析】
通过折线统计图中得出甲、乙两个组的各个数据,进而求出甲、乙的平均数,甲、乙的方差,进而做比较得出答案.【详解】甲的平均数:(3+6+2+6+4+3)÷6=4,乙的平均数:(4+3+5+3+4+5)÷6=4,[(3﹣4)2+(6﹣4)2+(2﹣4)2+(6﹣4)2+(4﹣4)2+(3﹣4)2]≈2.33,[(4﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2]≈0.1.∵2.33>0.1,∴.故选A.【点睛】本题考查了折线统计图、平均数、方差的计算方法和各个统计量的所反映数据的特征,掌握平均数、方差的计算公式是正确解答的前提.10、B【解析】
利用对角线性质求出AO=4cm,又根据∠AOD=120°,易知△ABO为等边三角形,从而得到AB的长度.【详解】AC、BD为矩形ABCD的对角线,所以AO=12AC=4cm,BO=12BD=又因为∠AOD=120°,所以∠AOB=60°,所以三角形ABO为等边三角形,故AB=AO=4cm,故选B.【点睛】本题考查矩形的对角线性质,本题关键在于能够证明出三角形是等边三角形.二、填空题(每小题3分,共24分)11、①②.【解析】试题分析:∵△ABE、△BCF为等边三角形,∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,∴∠ABE﹣∠ABF=∠FBC﹣∠ABF,即∠CBA=∠FBE,在△ABC和△EBF中,∵AB=EB,∠CBA=∠FBE,BC=BF,∴△ABC≌△EBF(SAS),选项①正确;∴EF=AC,又∵△ADC为等边三角形,∴CD=AD=AC,∴EF=AD,同理可得AE=DF,∴四边形AEFD是平行四边形,选项②正确;若AB=AC,∠BAC=120°,则有AE=AD,∠EAD=120°,此时AEFD为菱形,选项③错误,故答案为①②.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定;4.正方形的判定.12、4【解析】
根据黄金分割的概念把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割.【详解】由题意得:AB⋅BC=AC2=4.故答案为:4.【点睛】此题考查黄金分割,解题关键可知与掌握其概念.13、1【解析】
根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|=2,再根据反比例函数的图象位于第一象限即可求出k的值.【详解】连接OB.∵AB∥x轴,∴S△AOB=S△ACB=2,根据题意可知:S△AOB|k|=2,又反比例函数的图象位于第一象限,k>0,则k=1.故答案为1.【点睛】本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.14、x≥﹣2且x≠1.【解析】由知,∴,又∵在分母上,∴.故答案为且.15、135【解析】
根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数即可.【详解】正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为:1080°÷8=135°,故答案为135.16、【解析】
连接AC、CF,根据正方形的性质得到∠ACF=90°,根据勾股定理求出AF的长,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.【详解】解:连接AC、CF,在正方形ABCD和正方形CEFG中,∠ACG=45°,∠FCG=45°,∴∠ACF=90°,∵BC=a,CE=b,∴AC=a,CF=b,由勾股定理得,AF==,∵∠ACF=90°,H是AF的中点,∴CH=,故答案为:.【点睛】本题考查的是直角三角形的性质、勾股定理的应用、正方形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.17、1【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=BD,再由BC=BD,可得CD=BC=BD,可得△BCD是等边三角形,再根据等边三角形的性质即可求解.【详解】解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴CD=BD,∵BC=BD,∴CD=BC=BD,∴△BCD是等边三角形,∴∠B=60°,∴∠A=1°.故答案为:1.【点睛】考查了直角三角形的性质,等边三角形的判定与性质,关键是证明△BCD是等边三角形.18、3或1.【解析】
由旋转的性质可知△ACB≌△AED,推出∠CAB=∠EAD=∠CBA,则当∠DAF=∠CBA时,分两种情况,一种是A,F,E三点在同一直线上,另一种是D,A,C在同一条直线上,可分别求出CP的长度.【详解】解:∵AC=BC=10,
∴∠CAB=∠CBA,
由旋转的性质知,△ACB≌△AED,
∴AE=AC=10,∠CAB=∠EAD=∠CBA,
①∵∠DAF=∠CBA,
∴∠DAF=∠EAD,
∴A,F,E三点在同一直线上,如图1所示,
过点C作CH⊥AB于H,
则AH=BH=AB=7,
∵EP⊥AC,
∴∠EPA=∠CHA=90°,
又∵∠CAH=∠EAP,CA=EA,
∴△CAH≌△EAP(AAS),
∴AP=AH=7,
∴PC=AC-AP=10-7=3;
②当D,A,C在同一条直线上时,如图2,
∠DAF=∠CAB=∠CBA,
此时AP=AD=AB=7,
∴PC=AC+AP=10+7=1.
故答案为:3或1.【点睛】本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定等,解题的关键是能够分类讨论,求出两种情况的结果.三、解答题(共66分)19、(1)甲:84.8分;乙:1.8分;(2)1.【解析】
(1)根据加权平均数的定义即可求解;(2)根据甲乙的分数求出写作的分值占比,再求出丙的分数即可.【详解】解:(1)甲:(分);乙:(分).答:甲、乙两位同学的得分分别是84.8、1.8分.(2)∵甲得分80分,乙得分84分,∴乙比甲多得4分,∴现场写作的占比为,丙的现场写作比乙多5分,∴丙的得分为(分).故答案为:1.【点睛】此题主要考查加权平均数的求解与应用,解题的关键是熟知加权平均数的定义.20、(1)见解析;(2)见解析;(3)D1(3,3)、D2(-7,3)、D3(-5,-3).【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;(2)首先确定A、B、C三点绕坐标原点O逆时针旋转90°后的对应点位置,再连接即可;(3)结合图形可得D点位置有三处,分别以AB、AC、BC为对角线确定位置即可.【详解】(1)如图所示,△即为所求作;(2)如图所示,△DEF即为所求作;(3)D1(3,3)、D2(-7,3)、D3(-5,-3).【点睛】此题主要考查了作图--旋转变换,关键是正确确定A、B、C三点旋转后的位置.21、(1)1;1.5(2)y=0.5x+1(3)选择乙厂节省费用,节省费用500元.【解析】
(1)根据纵轴图象判断即可,用2到6千个时的费用除以证件个数计算即可得解;(2)设甲厂的印刷费y甲与证书数量x的函数关系式为y=kx+b,利用待定系数法解答即可;(3)用待定系数法求出乙厂x>2时的函数解析式,再求出x=8时的函数值,再求出甲厂印制1个的费用,然后求出8千个的费用,比较即可得解.【详解】解:(1)(1)由图可知,甲厂的制版费为1千元;当x≤2(千个)时,乙厂证书印刷单价是3÷2=1.5元/个;故答案为1;1.5;(2)解:设甲厂的印刷费y甲与证书数量x的函数关系式为y=kx+b,可得:,解得:,所以甲厂的印刷费y甲与证书数量x的函数关系式为:y=0.5x+1;(3)解:设乙厂x>2时的函数解析式为y=k2x+b2,则,解得,∴y=0.25x+2.5,x=8时,y=0.25×8+2.5=4.5千元,甲厂印制1个证件的费用为:(4﹣1)÷6=0.5元,印制8千个的费用为0.5×8+1=4+1=5千元,5﹣4.5=0.5千元=500元,所以,选择乙厂节省费用,节省费用500元.【点睛】本题主要考查了一次函数和一元一次不等式的实际应用,是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.22、(1)相等;(2)①见解析,②结论成立,见解析;(3)-1或+1【解析】
(1)证△ADH≌△PQH得AD=PQ=CD,据此可得CQ=PD;(2)①根据题意补全图形即可;②连接HC,先证△ADH≌△CDH得∠1=∠2,再证△CQH≌△PDH得出答案;(3)分以上图1、图2中的两种情况,先求出∠DAP=∠PHD=30°,再由在Rt△ADP中AD=CD=得出PD=ADtan30°=1,从而得解.【详解】解:(1)相等∵∠AHP=∠DHQ=90°,∴∠AHD=∠PHQ,∵四边形ABCD是正方形,∴∠ADB=∠BDC=∠PQH=45°,AD=CD,则DH=QH,∴△ADH≌△PQH(ASA),∴AD=PQ=CD,∴CQ=PD,故答案为:相等.(2)①依题意补全如图所示,②结论成立,证明如下:证明:连接HC,∵正方形ABCD,BD为对角线,∴∠5=45°,∵AD=CD、DH=DH,∴△ADH≌△CDH(SAS),∴∠1=∠2,又∵QH⊥BD,∠5=45°,∴∠4=45°,∴∠4=∠5,∴QH=HD,∠HQC=∠HDP=135°,∵AH⊥HP,AD⊥DP,∴∠AHP=∠ADP=90°,又∵∠AOH=∠DOP,∴∠1=∠3,∴∠2=∠3,∴△CQH≌△PDH(AAS)∴CQ=PD.(3)如图2,连接AP,由(1)知△ADH≌△PQH,∴AH=PH,∵∠AHP=90°,∴∠APH=45°,又∠ADH=45°,∠PHD=30°,∴∠DAP=∠PHD=30°,在Rt△ADP中,∵AD=CD=,∴PD=ADtan30°=1,则CP=CD-PD=-1;如图3,连接AP,同理可得PD=1,则CP=+1,综上,PC的长度为-1或+1.【点睛】本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形的判定与性质、直角三角形的有关性质等.23、(1)1200≤x<1400,1400≤x<1600;18人;5%;7.5%.(2)详见解析;(3)大约有338户.【解析】
(1)、(2)比较简单,读图表以及频数分布直方图易得出答案.
(3)根据(1)、(2)的答案可以分析求解.求出各个分布段的数据即可.【详解】(1)根据题意可得出分布是:1200≤x<1400,1400≤x<1600;
1000≤x<1200中百分比占45%,所以40×0.45=18人;
1600≤x<1800中人数有2人,故占240=0.05,故百分比为5%.
故剩下1400≤x<1600中人数有3,占7.5%.
(2
(3)大于1000而不足1600的占75%,故450×0.75=337.5≈338户.
答:居民小区家庭属于中等收入的大约有338户.【点睛】本题的难度一般,主要考查的是频率直方图以及考生探究图表的能力.24、(1)当;(2)第10天:200元,第15天:270元;(3)最佳销售期有5天,最高为9.6元.【解析】
(1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;
(2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额.
(3)日销售量不低于1千克,即y≥1.先解不等式2x≥1,得x≥12,再解不等式﹣6x+120≥1,得x≤16,则求出“最佳销售期”共有5天;然后根据.(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.【详解】解:(1)①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,
∵直线y=k1x过点(15,30),∴15k1=30,解得k1=2.
∴y=2x(0≤x≤15);
②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,
∵点(15,30),(20,0)在y=k2x+b的图象上,
∴,解得:.
∴y=﹣6x+120(15<x≤20).
综上所述,可知y与x之间的函数关系式为:..
(2)∵第10天和第15天在第10天和第20天之间,
∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,
∵点(10,10),(20,8)在z=mx+n的图象上,,解得:.
∴.
当x=10时,,y=2×10=20,销售金额为:10×20=200(元);
当x=15时,,y=2×15=30,销售金额为:9×30=270(元).
故第10天和第15天的销售金额分别为200元,270元.
(3)若日销售量不低于1千克,则y≥1.
当0≤x≤15时,y=2x,
解不等式2x≥1,得x≥12;
当15<x≤20时,y=﹣6x+120,
解不等式﹣6x+120
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服装行业面料设计师培训心得
- 急诊抢救科护士的工作总结
- 造纸行业工程师工作总结
- 农业行业销售工作总结
- 纺织服装行业营业员工作总结
- 科研行业前台工作总结
- 服装行业人才招聘实例总结
- 艺术行业行政后勤工作总结
- 《管教儿女的智慧》课件
- 《心力衰竭护理》课件
- 维修工作流程图
- Y2-90S-4-三相异步电动机的制作-课程设计报告
- 中式烹调工艺与实训(第三版) 课件 第10、11章 烹饪美学、菜肴创新
- 物业投诉处理培训课件
- 《春秋》导读学习通章节答案期末考试题库2023年
- 1.1、供应商管理控制流程与风险控制流程图
- 初二年级劳动课教案6篇
- 箱变迁移工程施工方案
- 北师大版九年级数学下册《圆的对称性》评课稿
- 《遥感原理与应用》期末考试试卷附答案
- 物流无人机垂直起降场选址与建设规范(征求意见稿)
评论
0/150
提交评论