惠州市重点中学2022-2023学年八年级数学第二学期期末统考模拟试题含解析_第1页
惠州市重点中学2022-2023学年八年级数学第二学期期末统考模拟试题含解析_第2页
惠州市重点中学2022-2023学年八年级数学第二学期期末统考模拟试题含解析_第3页
惠州市重点中学2022-2023学年八年级数学第二学期期末统考模拟试题含解析_第4页
惠州市重点中学2022-2023学年八年级数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于()A.10 B.9 C.8 D.62.如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图象可得二元一次方程组的解是()A. B. C. D.3.下列结论中,不正确的是()A.对角线互相垂直的平行四边形是菱形B.对角线相等的平行四边形是矩形C.一组对边平行,一组对边相等的四边形是平行四边形D.对角线互相垂直的四边形面积等于对角线乘积的一半4.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm5.若分式有意义,则实数的取值范围是()A. B. C. D.6.如图,在边长为10的菱形ABCD中,P为CD上一点,BP⊥CD,连接AP,若DP=4,则AP的长为()A.241 B.234 C.147.如图,D,E是△ABC中AB,BC边上的点,且DE∥AC,∠ACB角平分线和它的外角的平分线分别交DE于点G和H.则下列结论错误的是()A.若BG∥CH,则四边形BHCG为矩形B.若BE=CE时,四边形BHCG为矩形C.若HE=CE,则四边形BHCG为平行四边形D.若CH=3,CG=4,则CE=2.58.甲,乙,丙,丁四人进行射击测试,记录每人10次射击成情,得到各人的射击成绩方差如表中所示,则成绩最稳定的是()统计量甲乙丙丁方差0.600.620.500.44A.甲 B.乙 C.丙 D.丁9.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,1210.如图,四边形ABCD是正方形,点E、F分别在AD、CD上,AF、BE相交于点G,且AF=BE,则下列结论不正确的是:()A.AF⊥BE B.BG=GF C.AE=DF D.∠EBC=∠AFD二、填空题(每小题3分,共24分)11.直线y=2x+1经过点(a,0),则a=________.12.菱形的两条对角线长分别是6和8,则菱形的边长为_____.13.如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为________.14.若ab=﹣2,a+b=1,则代数式a2b+ab2的值等于_____.15.当x=4时,二次根式的值为______.16.如图,在▱ABCD中(AD>AB),用尺规作图作射线BP交AD于点E,若∠D=50°,则∠AEB=___度.17.将圆心角为90°,面积为4π的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为_____________________.18.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.三、解答题(共66分)19.(10分)如图(1),在平面直角坐标系中,直线y=-x+m交y轴于点A,交x轴于点B,点C为OB的中点,作C关于直线AB的对称点F,连接BF和OF,OF交AC于点E,交AB于点M.(1)直接写出点F的坐标(用m表示);(2)求证:OF⊥AC;(3)如图(2),若m=2,点G的坐标为(-,0),过G点的直线GP:y=kx+b(k≠0)与直线AB始终相交于第一象限;①求k的取值范围;②如图(3),若直线GP经过点M,过点M作GM的垂线交FB的延长线于点D,在平面内是否存在点Q,使四边形DMGQ为正方形?如果存在,请求出Q点坐标;如果不存在,请说明理由.20.(6分)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)直接写出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车出发多长时间后,两车恰好相距40km?21.(6分)在一次数学实践活动中,观测小组对某品牌节能饮水机进行了观察和记录,当观察到第分钟时,水温为,记录的相关数据如下表所示:第一次加热、降温过程…t(分钟)0102030405060708090100…y()204060801008066.757.15044.440…(饮水机功能说明:水温加热到时饮水机停止加热,水温开始下降,当降到时饮水机又自动开始加热)请根据上述信息解决下列问题:(1)根据表中数据在如图给出的坐标系中,描出相应的点;(2)选择适当的函数,分别求出第一次加热过程和第一次降温过程关于的函数关系式,并写出相应自变量的取值范围;(3)已知沏茶的最佳水温是,若18:00开启饮水机(初始水温)到当晚20:10,沏茶的最佳水温时间共有多少分钟?22.(8分)如图,△ABC中,AB=AC.求作一点D,使得以A、B、C、D为顶点的四边形是菱形,并证明你作图的正确性.(要求:尺规作图,保留作图痕迹,不写作法)23.(8分)一次函数的图像经过,两点.(1)求的值;(2)判断点是否在该函数的图像上.24.(8分)计算:(1)(2)25.(10分)下图是某大桥的斜拉索部分效果图,为了测得斜拉索顶端距离海平面的高度,先测出斜拉索底端到桥塔的距离(的长)约为米,又在点测得点的仰角为,测得点的俯角为,求斜拉索顶端点到海平面点的距离(的长).()26.(10分)如图,平行四边形中,对角线与相交于点,点为的中点,连接,的延长线交的延长线于点,连接.(1)求证:;(2)若,∠BCD=120°判断四边形的形状,并证明你的结论.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

作EF⊥BC于F,根据角平分线的性质可知EF=DE=3,即可求出△BCE的面积.【详解】作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=3,∴△BCE的面积=×BC×EF=9,故选B.【点睛】本题考查了角平分线的性质,熟练掌握角平分线的性质:角平分线上的点到角两边的距离相等是解答本题的关键.2、A【解析】分析:本题利用一次函数与方程组的关系来解决即可.解析:两个函数的交点坐标即为方程组的解,由图知P(-4,-2),∴方程组的解为.故选A.点睛:方程组与一次函数的关系:两条直线相交,交点坐标即为两个函数解析式组成的方程组的解.本体关键是要记得这个知识点,然后看图直接给出答案.3、C【解析】

由菱形和矩形的判定得出A、B正确,由等腰梯形的判定得出C不正确,由对角线互相垂直的四边形面积等于对角线乘积的一半,得出D正确,即可得出结论.【详解】A.∵对角线互相垂直的平行四边形是菱形,∴A正确;B.∵对角线相等的平行四边形是矩形,∴B正确;C.∵一组对边平行,一组对边相等的四边形是平行四边形或等腰梯形,∴C不正确;D.∵对角线互相垂直的四边形面积等于对角线乘积的一半,∴D正确;故选:C.【点睛】考查了菱形的判定、矩形的判定、平行四边形的判定、等腰梯形的判定以及四边形面积;熟记菱形/矩形和等腰梯形的判定方法是解题的关键.4、B【解析】

试题分析:由题意可知,在直角三角形中,30°角所对的直角边等于斜边的一般,所以斜边=2×2=4cm.考点:含30°的直角三角形的性质.5、B【解析】

分式有意义,则,求出x的取值范围即可.【详解】∵分式有意义,∴,解得:,故选B.【点睛】本题是对分式有意义的考查,熟练掌握分式有意义的条件是解决本题的关键.6、A【解析】

在Rt△BCP中利用勾股定理求出PB,在Rt△ABP中利用勾股定理求出PA即可.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD=10,AB∥CD∵PD=4,∴PC=6,∵PB⊥CD,∴PB⊥AB,∴∠CPB=∠ABP=90°,在Rt△PCB中,∵∠CPB=90°,PC=6,BC=10,∴PB=BC2在Rt△ABP中,∵∠ABP=90°,AB=10,PB=8,∴PA=AB2故选:A【点睛】此题考查菱形的性质,勾股定理,解题关键在于求出PB.7、C【解析】

由∠ACB角平分线和它的外角的平分线分别交DE于点G和H可得∠HCG=90°,∠ECG=∠ACG即可得HE=EC=EG,再根据A,B,C,D的条件,进行判断.【详解】解:∵∠ACB角平分线和它的外角的平分线分别交DE于点G和H,∴∠HCG=90°,∠ECG=∠ACG;∵DE∥AC.∴∠ACG=∠HGC=∠ECG.∴EC=EG;同理:HE=EC,∴HE=EC=EG=HG;若CH∥BG,∴∠HCG=∠BGC=90°,∴∠EGB=∠EBG,∴BE=EG,∴BE=EG=HE=EC,∴CHBG是平行四边形,且∠HCG=90°,∴CHBG是矩形;故A正确;若BE=CE,∴BE=CE=HE=EG,∴CHBG是平行四边形,且∠HCG=90°,∴CHBG是矩形,故B正确;若HE=EC,则不可以证明四边形BHCG为平行四边形,故C错误;若CH=3,CG=4,根据勾股定理可得HG=5,∴CE=2.5,故D正确.故选C.【点睛】本题考查了矩形的判定,平行四边形的性质和判定,关键是灵活这些判定解决问题.8、D【解析】

根据方差的性质即可判断.【详解】∵丁的方差最小,故最稳定,选D.【点睛】此题主要考查方差的应用,解题的关键是熟知方差的性质.9、C【解析】试题分析:将原数据按由小到大排列起来,处于最中间的数就是中位数,如果中间有两个数,则中位数就是两个数的平均数;众数是指在这一组数据中出现次数最多的数.考点:众数;中位数10、B【解析】

由四边形ABCD是正方形,可得AD=BA,∠D=∠BAE=90°,利用直角三角形全等的判定(HL)可得Rt△ABE≌Rt△DAF,可得出边角关系,对应选项逐一验证即可.【详解】∵四边形ABCD是正方形,∴AD=AB,∠D=∠BAE=90°,又AF=BE,∴Rt△ABE≌Rt△DAF(HL),∴∠ABE=∠DAF,∠AEB=∠DFA,AE=DF,因此C选项正确,又∵∠DAF+∠DFA=90°,∴∠DAF+∠AEB=90°,∴∠AGE=90°,即AF⊥BE,因此A选项正确,∵∠EBC+∠ABE=90°,∠ABE+∠AEB=90°,∠AEB=∠AFD,∴∠EBC=∠AFD,因此D选项正确,∵BE=AF,若BG=GF,则AG=GE,可得,∠DAF=45°,则AF应该为正方形的对角线,从图形来看,AF不是对角线,所以与题目矛盾,所以B选项错误,故选:B.【点睛】考查了正方形的性质,全等三角形的判定和性质,余角的定义,垂直的定义,熟记几何图形的概念,判定和性质定理是解题的关键,注意题目要求选不正确的.二、填空题(每小题3分,共24分)11、【解析】

代入点的坐标,求出a的值即可.【详解】将(a,0)代入直线方程得:2a+1=0解得,a=,故答案.【点睛】本题考查了直线方程问题,考查函数代入求值,是一道常规题.12、1【解析】

根据菱形对角线垂直平分,再利用勾股定理即可求解.【详解】解:因为菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长为=1.故答案为:1.【点睛】此题主要考查菱形的边长求解,解题的关键是熟知菱形的性质及勾股定理的运用.13、(2,5)【解析】

∵将△ABC先向右平移4个单位长度,再向下平移1个单位长度,∵图形可知点A的坐标为(-2,6),∴则平移后的点A1坐标为(2,5).14、﹣1【解析】

直接将要求值的代数式提取公因式ab,进而把已知数据代入求出答案.【详解】∵ab=-1,a+b=1,∴a1b+ab1=ab(a+b)=-1×1=-1.故答案为-1.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.15、0【解析】

直接将,代入二次根式解答即可.【详解】解:把x=4代入二次根式=0,故答案为:0【点睛】此题主要考查了二次根式的定义,直接将代入求出,利用二次根式的性质直接开平方是解决问题的关键.16、1.【解析】

由平行四边形的性质可知:AD∥BC,推出∠AEB=∠EBC,求出∠EBC即可;【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠D=50°,AD∥BC,由作图可知,BE平分∠ABC,∴∠EBC=∠ABC=1°,∴∠AEB=∠EBC=1°,故答案为1.【点睛】本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17、1【解析】

设扇形的半径为R,则=4π,解得R=4,设圆锥的底面半径为r,根据题意得=4π,解得r=1,即圆锥的底面半径为1.18、3或1.【解析】

当为直角三角形时,有两种情况:①当点落在矩形内部时,如答图1所示.连结,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点、、共线,即沿折叠,使点落在对角线上的点处,则,,可计算出,设,则,,然后在中运用勾股定理可计算出.②当点落在边上时,如答图2所示.此时四边形为正方形.【详解】解:当为直角三角形时,有两种情况:①当点落在矩形内部时,如答图1所示.连结,在中,,,,沿折叠,使点落在点处,,当为直角三角形时,只能得到,点、、共线,即沿折叠,使点落在对角线上的点处,如图,,,,设,则,,在中,,,解得,;②当点落在边上时,如答图2所示.此时为正方形,.综上所述,的长为3或1.故答案为:3或1.【点睛】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.三、解答题(共66分)19、(1)(m,m)(2)见解析(3)①0<k<6②(,-)【解析】

(1)CF⊥AB,CR=FR,则∠RCB=45°,则RC=RB=RF,∠RBF=45°,即FB⊥x轴,即可求解;(2)证明△AOC≌△OBF(HL),即可求解;(3)①将点(-,0)代入y=kx+b即可求解;②求出点D(2,-1),证明△MNG≌△MHD(HL),即可求解.【详解】解:(1)y=-x+m,令x=0,则y=m,令y=0,则x=m,则∠ABO=45°,故点A、B的坐标分别为:(0,m)、(m,0),则点C(m,0),如图(1)作点C的对称轴F交AB于点R,则CF⊥AB,CR=FR,则∠RCB=45°,则RC=RB=RF,∴∠RBF=45°,即FB⊥x轴,故点F(m,m);(2)∵OC=BF=m,OB=OA,∴△AOC≌△OBF(HL),∴∠OAC=∠FOB,∵∠OAC+∠AOE=90°,∴∠OAC+∠AOE=90°,∴∠AEO=90°,∴OF⊥AC;(3)①将点(-,0)代入y=kx+b得:,解得:,由一次函数图象知:k>0,∵交点在第一象限,则,解得:0<k<6;②存在,理由:直线OF的表达式为:y=x,直线AB的表达式为:y=-x+2,联立上述两个表达式并解得:x=,故点M(,),直线GM所在函数表达式中的k值为:,则直线MD所在直线函数表达式中的k值为-,将点M坐标和直线DM表达式中的k值代入一次函数表达式并解得:直线DM的表达式为:y=-x+4,故点D(2,-1),过点M作x轴的垂线于点N,作x轴的平行线交过点G于y轴的平行线于点S,过点G作y轴的平行线交过点Q与x轴的平行线于点T,则,∴△MNG≌△MHD(HL),∴MD=MG,则△GTQ≌△MSG,则GT=MS=GN=,TQ=SG=MN=,故点Q(,-).【点睛】本题考查的是一次函数综合运用,涉及到待定系数法求一次函数解析式,一次函数图像的交点,全等三角形的判定与性质、点的对称性,其中(3)②,证明△MNG≌△MHD(HL),是本题的难点.20、(1)m=1,a=2,(2);(3)小时或小时.【解析】

(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a的值和m的值;(2)由分段函数当0≤x≤1,1<x≤1.5,1.5<x≤7由待定系数法就可以求出结论;(3)先求出乙车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.【详解】(1)由题意,得m=1.5-0.5=1.13÷(3.5-0.5)=2,∴a=2.答:a=2,m=1;(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得2=k1,∴y=2x当1<x≤1.5时,y=2;当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得,解得:,∴y=2x-3.∴;(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得解得:,∴y=80x-4.当2x-3-2=80x-4时,解得:x=.当2x-3+2=80x-4时,解得:x=.−2=,−2=.答:乙车行驶小时或小时,两车恰好相距2km.【点睛】本题考出了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出一次函数的解析式是关键.21、(1)见解析;(2)第一次加热:,;第一次降温:,;(3)分钟.【解析】

(1)利用描点法画出图形即可;(2)利用待定系数法即可解决问题;(3)首先判断出而18:00至1:10共130分钟,饮水机加热一次,降温一次,再加热了一次的过程,分别求出加热过程中,降温过程中的最佳水温时间即可解决问题;【详解】解:(1)如图所示:(2)观察图象可知第一次加热过程的函数关系是一次函数,设解析式为y=kt+b,则有,解得:,∴第一次加热过程的函数关系是y=2x+1.(0≤t≤40)由图象可知第一次降温过程的函数关系是反比例函数,设y=,把(50,80)代入得到m=4000,∴第一次降温过程的函数关系是y=(40≤t≤100).(3)由题意可知,第二次加热观察时间为30分钟,结束加热是第130分钟,而18:00至1:10共130分钟,∴饮水机加热一次,降温一次,再加热了一次,把y=80代入y=2t+1,得到t=30,把y=90代入y=2x+1,得到t=35,∴一次加热过程出现的最佳水温时间为:35−30=5分钟,把y=80代入y=,得到t=50,把y=90代入y=,得到t=,∴一次降温出现的最佳水温时间为:50−=(分钟),∴18:00开启饮水机(初始水温1℃)到当晚1:10,沏茶的最佳水温时间共:+5×2=(分钟).【点睛】本题考查的是反比例函数的应用、一次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.22、见解析【解析】

分别以B,C为圆心,以AB长画弧,两弧相交一点,即为D点.【详解】如图即为所求作的菱形理由如下:∵AB=AC,BD=AB,CD=AC,∴AB=BD=CD=AC,∴四边形ABDC是菱形.【点睛】本题考查尺规作图和菱形的性质,解题的关键是掌握尺规作图和菱形的性质.23、(1)k=-2,b=8;(2)在图象上.【解析】

(1)利用待定系数法即可得到k,b的值;(2)将点P的坐标代入函数解析式,如满足函数解析式则点在函数图象上,否则不在函数图象上.【详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论