江苏省无锡江阴市华士片2022-2023学年数学八年级第二学期期末达标检测模拟试题含解析_第1页
江苏省无锡江阴市华士片2022-2023学年数学八年级第二学期期末达标检测模拟试题含解析_第2页
江苏省无锡江阴市华士片2022-2023学年数学八年级第二学期期末达标检测模拟试题含解析_第3页
江苏省无锡江阴市华士片2022-2023学年数学八年级第二学期期末达标检测模拟试题含解析_第4页
江苏省无锡江阴市华士片2022-2023学年数学八年级第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,2,3 B.1,2,﹣3 C.1,﹣2,3 D.﹣1,﹣2,32.当分式有意义时,则x的取值范围是()A.x≠2 B.x≠-2 C.x≠ D.x≠-3.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2104.在平面直角坐标系的第一象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,-4). B.(4,-3). C.(3,4). D.(4,3).5.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.6.如图,A、B、C、D四点都在⊙O上,若OCAB,AOC70,则圆周角D的度数等于()A.70 B.50 C.35 D.207.等腰三角形的两条边长分别为3和4,则其周长等于()A.10 B.11 C.10或11 D.不确定8.如图,在▱ABCD中,∠A+∠C=140°,则∠B的度数为(A.140° B.120° C.1109.某班第一小组9名同学数学测试成绩为:78,82,98,90,100,60,75,75,88,这组数据的中位数是A.60 B.75 C.82 D.10010.如图,正方形中,,是的中点,是上的一动点,则的最小值是()A.2 B.4 C. D.11.若一个多边形的内角和与外角和总共是900°,则此多边形是()A.四边形 B.五边形 C.六边形 D.七边形12.如图,在中,,垂直平分于点,交于点,则为()A.30° B.25° C.20° D.15°二、填空题(每题4分,共24分)13.如图,在ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=52°,则∠B的度数是________.14.已知一次函数的图象过点,那么此一次函数的解析式为__________.15.顺次连接等腰梯形各边中点所得的四边形是_____.16.已知,则的值为__________.17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为_____.18.已知,则的值等于________.三、解答题(共78分)19.(8分)(1)计算:2﹣6+3(2)已知x=+1,y=﹣1,求代数式的值.20.(8分)如图,中,.(1)用尺规作图法在上找一点,使得点到边、的距离相等(保留作图痕迹,不用写作法);(2)在(1)的条件下,若,,求的长.21.(8分)如图,直线l1经过过点P(1,2),分别交x轴、y轴于点A(2,0),B.(1)求B点坐标;(2)点C为x轴负半轴上一点,过点C的直线l2:交线段AB于点D.①如图1,当点D恰与点P重合时,点Q(t,0)为x轴上一动点,过点Q作QM⊥x轴,分别交直线l1、l2于点M、N.若,MN=2MQ,求t的值;②如图2,若BC=CD,试判断m,n之间的数量关系并说明理由.22.(10分)如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.(1)求证:△ABD≌△FBC;(1)如图(1),求证:AM1+MF1=AF1.23.(10分)(1)分解因式:①②(2)解不等式组,并把解集在数轴上表示出来.24.(10分)某学校组织了“热爱宪法,捍卫宪法”的知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表,请你根据统计图表解答下列问题.(1)此次抽样调查的样本容量是_________;(2)写出表中的a=_____,b=______,c=________;(3)补全学生成绩分布直方图;(4)比赛按照分数由高到低共设置一、二、三等奖,若有25%的参赛学生能获得一等奖,则一等奖的分数线是多少?25.(12分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?26.运城市某学校去年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)今年为响应“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了,乙种足球售价比第一次购买时降低了.如果此次购买甲、乙两种足球的总费用不超过3000元,那么这所学校最多可购买多少个乙种足球?

参考答案一、选择题(每题4分,共48分)1、B【解析】

找出方程的二次项系数,一次项系数,以及常数项即可.【详解】方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是1,2,﹣3,故选:B.【点睛】此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(其中a,b,c为常数,且a≠0).解题关键在于找出系数及常熟项2、B【解析】

根据分母不为零列式求解即可.【详解】分式中分母不能为0,所以,3x+6≠0,解得:x≠-2,故选B.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:①分式无意义⇔分母为零;②分式有意义⇔分母不为零;③分式值为零⇔分子为零且分母不为零.3、B【解析】

设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.4、D【解析】

根据第一象限内点的坐标特征,可得答案.【详解】解:由题意,得

x=4,y=3,

即M点的坐标是(4,3),

故选:D.【点睛】本题考查点的坐标,熟记各象限内点的坐标特征是解题关键.5、B【解析】∵y轴表示当天爷爷离家的距离,X轴表示时间又∵爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∴刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∴选项B中的图形满足条件.故选B.6、C【解析】

由垂径定理将已知角转化,再用圆周角定理求解.【详解】解:因为OC⊥AB,

由垂径定理可知,所以,∠COB=∠COA=70°,根据圆周角定理,得故选:C.【点睛】本题综合考查了垂径定理和圆周角的求法及性质.解答这类题要灵活运用所学知识解答问题,熟练掌握圆的性质是关键.7、C【解析】

根据等腰三角形的性质即可判断.【详解】∵等腰三角形的两条边长分别为3和4∴第三边为3或4,故周长为10或11,故选C【点睛】此题主要考查等腰三角形的周长,解题的关键是熟知等腰三角形的性质.8、C【解析】

根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.【详解】∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°,故选:C.【点睛】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.9、C【解析】

根据中位数的定义:将一组数据按照大小顺序排列后,取最中间的数或最中间两个数的平均数,做为这组数据的中位数.【详解】先将9名同学数学测试成绩:78,82,98,90,100,60,75,75,88,按从小到大排列:60,75,75,78,82,88,90,98,100,其中最中间的数是:82,所以这组数据的中位数是82,故选C.【点睛】本题主要考查数据中位数的定义,解决本题的关键是要熟练掌握中位数的定义.10、D【解析】

因为A,C关于DB对称,P在DB上,连接AC,EC与DB交点即为P,此时的值最小.【详解】如图,因为A,C关于DB对称,P再DB上,作点连接AC,EC交BD与点P,此时最小.此时=PE+PC=CE,值最小.∵正方形中,,是的中点∴∠ABC=90°,BE=2,BC=4∴CE=故答案为故选D.【点睛】本题考查的是两直线相加最短问题,熟练掌握对称是解题的关键.11、B【解析】

本题需先根据已知条件,再根据多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数【详解】解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900°﹣360°=140°,∴多边形的边数是:140°÷180°+2=3+2=1.故选B.【点睛】本题主要考查了多边形内角与外角,在解题时要根据外角和的度数以及内角和度数的计算公式解出本题即可.12、D【解析】

连接BD,根据线段垂直平分线的性质可以证明△ABD是等腰三角形,在直角△BCD中根据30°角所对的直角边等于斜边的一半求出∠BDC的度数,然后利用三角形的外角的性质即可求解.【详解】连接BD,∵DE垂直平分AB于E,∴AD=BD=2BC,∴∵∴∠BDC=30°,又∵BD=DA,∴.故选D.【点睛】本题考查了线段的垂直平分线的性质以及等腰三角形的性质,正确求得∠BDC的度数是关键.二、填空题(每题4分,共24分)13、76º【解析】

过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的值,由此得解.【详解】过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;∵BC=2AB,F为AD的中点,∴BG=AB=FG=AF,连接EG,在Rt△BEC中,EG是斜边上的中线,

则BG=GE=FG=BC;

∵AE∥FG,

∴∠EFG=∠AEF=∠FEG=52°,

∴∠AEG=∠AEF+∠FEG=104°,

∴∠B=∠BEG=180°-104°=76°.【点睛】考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.14、【解析】

用待定系数法即可得到答案.【详解】解:把代入得,解得,所以一次函数解析式为.故答案为【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.15、菱形【解析】

解:顺次连接等腰梯形各边中点所得的四边形是菱形,理由为:

已知:等腰梯形ABCD,E、F、G、H分别为AD、AB、BC、CD的中点,

求证:四边形EFGH为菱形.

证明:连接AC,BD,

∵四边形ABCD为等腰梯形,

∴AC=BD,

∵E、H分别为AD、CD的中点,

∴EH为△ADC的中位线,

∴EH=AC,EH∥AC,

同理FG=AC,FG∥AC,

∴EH=FG,EH∥FG,

∴四边形EFGH为平行四边形,

同理EF为△ABD的中位线,

∴EF=BD,又EH=AC,且BD=AC,∴EF=EH,则四边形EFGH为菱形.

故答案为菱形.16、【解析】

根据二次根式有意义的条件可求得x的值,继而可求得y值,代入所求式子即可求得答案.【详解】由题意得,解得:x=4,所以y=3,所以=,故答案为:.【点睛】本题考查了二次根式有意义的条件,熟练掌握是解题的关键.17、45°【解析】如图,连接OA,因OA=OC,可得∠ACO=∠OAC=45°,根据三角形的内角和公式可得∠AOC=90°,再由圆周角定理可得∠B=45°.18、3【解析】

将通分后,再取倒数可得结果;或将分子分母同除,代入条件即可得结果.【详解】方法一:∵∴方法二:故答案为3.【点睛】本题考查分式的求值,从条件入手或从问题入手,都可以得出结果,将分式变形是解题的关键.三、解答题(共78分)19、(1)14;(2).【解析】

(1)先化成最简二次根式,再合并即可;(2)先化简,再代入求出即可.【详解】(1)原式(2)当【点睛】本题考查了二次根式的混合运算和求值,能正确根据运算法则进行化简和计算是解此题的关键.20、(1)见解析;(2)【解析】

(1)根据题意作∠CAB的角平分线与BC的交点即为所求;(2)根据含30°的直角三角形的性质及勾股定理即可求解.【详解】(1)(2)由(1)可知为的角平分线∴∴∴∴在中,由勾股定理得:即解得:∴【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理的应用.21、(1);(2)①,;②【解析】【分析】(1)用待定系数法求解;(2)点Q的位置有两种情况:当点Q在点A左侧,点P的右侧时;当点Q在点P的右侧时,.都有,再根据MN=2MQ,可求t的值;(3)由BC=CD,证△BCO≌△CDE,设C(a,0),D(4+a,-a),并代入解析式,通过解方程组可得.【详解】解:(1)设直线l1的解析式为y=kx+b,直线经过点P(2,2),A(4,0),即,解得,直线l1的解析式为y=-x+4;(2)①∵直线l2过点P(2,2)且,即直线l2:,点Q(t,0),M(t,4-t),N(t,),1.当点Q在点A左侧,点P的右侧时,,,即,解得;⒉当点Q在点A右侧时,MQ=t-4,即,解得t=10,②过点D作DE⊥AC于E,∵BC=CD,BO=OA,∠DBC=∠1+∠ABO=∠BDC=∠2+∠DAE,∴∠1=∠2,∴△BCO≌△CDE,∴OC=ED,BO=CE,设C(a,0),D(4+a,-a),则,解得,即【点睛】本题考核知识点:一次函数综合应用.本题先用待定系数法求解析式,比较容易;后面要根据数形结合,结合线段的和差关系,情况讨论,比较综合;最后一小题要先证明三角形全等,得到线段的关系,再根据这个关系列出方程组,化简得到答案,这也比较难.22、(1)证明见详解;(1)证明见详解【解析】

(1)根据四边形ABFG、BCED是正方形得到两对边相等,一对直角相等,根据图形利用等式的性质得到一对角相等,利用SAS即可得到三角形全等;

(1)根据全等三角形的性质和勾股定理即可得到结论.【详解】解:(1)∵四边形ABFG、BCED是正方形,

∴AB=FB,CB=DB,∠ABF=∠CBD=90°,

∴∠ABF+∠ABC=∠CBD+∠ABC,

即∠ABD=∠CBF,

在△ABD和△FBC中,,

∴△ABD≌△FBC(SAS);

(1)∵△ABD≌△FBC,

∴∠BAD=∠BFC,

∴∠AMF=180°-∠BAD-∠CNA=180°-(∠BFC+∠BNF)=180°-90°=90°,

∴AM1+MF1=AF1.【点睛】此题考查了全等三角形的判定与性质,正方形的性质,勾股定理,熟练掌握全等三角形的判定定理是解题的关键.23、(1)①;②;(2)【解析】

(1)①直接提取公因式3m,再利用完全平方公式分解因式得出答案;②先去括号合并同类项,再利用平方差公式进行计算即可;(2)分别解不等式进而得出不等式组的解;【详解】解:(1)①原式②原式(2)解不等式①,得:解不等式②,得:则不等式组的解集为【点睛】此题考查提公因式法与公式法分解因式,解一元一次不等式组,在数轴上表示不等式的解集,解题关键在于掌握运算法则.24、(1)200;(2)62,0.06,38;(3)见解析;(4)1【解析】

(1)根据统计图中的数据可以求得此次抽样调查的样本容量;(2)根据统计图中的数据可以求得a、b、c的值;(3)根据(2)中a、c的值可以将统计图补充完

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论