版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列各式中,是二次根式的是()A. B. C. D.2.用配方法解一元二次方程时,方程变形正确的是()A. B. C. D.3.在四边形中,,再补充一个条件使得四边形为菱形,这个条件可以是()A. B.C. D.与互相平分4.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的值可能是()A.2 B.3 C.4 D.55.某校5个小组参加植树活动,平均每组植树10株.已知第一,二,三,五组分别植树9株、12株、9株、8株,那么第四小组植树()A.12株B.11株C.10株D.9株6.下列方程中是一元二次方程的是()A.2x+1=0 B.x2+y=1 C.x2+2=0 D.7.如图,在正方形中,,点,分别在、上,,,相交于点,若图中阴影部分的面积与正方形的面积之比为,则的周长为()A. B. C. D.8.在1000个数据中,用适当的方法抽取50个作为样本进行统计,频数分布表中54.5~57.5这一组的频数是6,那么它的频率为()A.0.12 B.0.60 C.6 D.129.如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为()A. B. C. D.10.一个正n边形的每一个外角都是45°,则n=()A.7 B.8 C.9 D.1011.在同一平面直角坐标系内,将函数y=2(x+1)2﹣1的图象沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度,得到图象的顶点坐标是()A.(﹣1,1) B.(1,﹣2) C.(2,﹣2) D.(1,﹣1)12.函数y=中自变量x的取值范围是()A.x>2 B.x≤2 C.x≥2 D.x≠2二、填空题(每题4分,共24分)13.的平方根是____.14.如图,点是矩形的对角线上一点,过点作,分别交、于、,连接、.若,.则图中阴影部分的面积为____________.15.若直角三角形斜边上的中线等于3,则这个直角三角形的斜边长为16.分解因式:3a2﹣12=___.17.如图,正方形ABCD的面积为1,则以相邻两边中点的连线EF为边的正方形EFGH的周长为________.18.如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是_______度.三、解答题(共78分)19.(8分)计算:(1)-|5-|+;(2)-(2+)220.(8分)如图,在△ABC中,点D是边BC的中点,AE平分∠BAC,CP⊥AE,垂足为E,EF∥BC.求证:四边形BDEF是平行四边形.21.(8分)某学校组织330学生集体外出活动,计划租用甲、乙两种大客车共8辆,已知甲种客车载客量为45人/辆,租金为400元/辆;乙种客车载客量为30人/辆,租金为280元/辆,设租用甲种客车x辆.(1)用含x的式子填写下表:车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车___________________________(2)给出最节省费用的租车方案,并求出最低费用.22.(10分)某市计划修建一条长60千米的地铁,根据甲,乙两个地铁修建公司标书数据发现:甲,乙两公司每天修建地铁长度之比为3:5;甲公司单独完成此项工程比乙公司单独完成此项工程要多用240天.(1)求甲,乙两个公司每天分别修建地铁多少千米?(2)该市规定:“该工程由甲,乙两个公司轮流施工完成,工期不超过450天,且甲公司工作天数不少于乙公司工作天数的”.设甲公司工作a天,乙公司工作b天.①请求出b与a的函数关系式及a的取值范围;②设完成此项工程的工期为W天,请求出W的最小值.23.(10分)如图,在等腰直角三角形ABC中,∠ACB=90°,BE⊥CE于E,AD⊥CE于D,AD=5cm,DE=3cm.(1)求证△CBE≌△ACD(2)求线段BE的长24.(10分)如图,正方形网格中每个小正方形的边长都是1个单位长度,每个小正方形的顶点叫做格点,已知△ABC的三个顶点都是格点,请按要求画出三角形.(1)将△ABC先上平移1个单位长度再向右平移2个单位长度,得到△A'B'C';(2)将△A'B'C'绕格点O顺时针旋转90°,得到△A''B''C''.25.(12分)计算(1)﹣+;(2)×﹣(+)(﹣).26.如图,在方格纸中,线段AB的两个端点都在小方格的格点上,分别按下列要求画格点四边形.在图甲中画一个以AB为对角线的平行四边形.在图乙中画一个以AB为边的矩形.
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据二次根式的定义逐一判断即可.【详解】A、是二次根式,故此选项正确;B、,根号下不能是负数,故不是二次根式;C、是立方根,故不是二次根式;D、,根号下不能是负数,故不是二次根式;故选A.【点睛】本题考查了二次根式的定义:形如(a≥0)叫二次根式.2、B【解析】
,移项得:,两边加一次项系数一半的平方得:,所以,故选B.3、D【解析】
由在四边形ABCD中,对角线AC,BD互相平分,可得四边形ABCD是平行四边形,又由对角线互相垂直的平行四边形是菱形,即可求得答案.【详解】解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形,故选:D.【点睛】此题考查了平行四边形的判定以及菱形的判定.此题比较简单,注意掌握对角线互相垂直的平行四边形是菱形定理的应用.4、D【解析】试题分析:连接AC,BD,交于点Q,过C作y轴垂线,交y轴于点M,交直线EF于点N,如图所示,由菱形ABCD,根据A与B的坐标确定出C坐标,进而求出CM与CN的值,确定出当点C落在△EOF的内部时k的范围,即可求出k的可能值.解:连接AC,BD,交于点Q,过C作y轴垂线,交y轴于点M,交直线EF于点N,如图所示,∵菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行,∴CQ=AQ=1,CM=2,即AC=2AQ=2,∴C(2,2),当C与M重合时,k=CM=2;当C与N重合时,把y=2代入y=x+4中得:x=﹣2,即k=CN=CM+MN=4,∴当点C落在△EOF的内部时(不包括三角形的边),k的范围为2<k<4,则k的值可能是3,故选B5、A【解析】【分析】根据平均数可知5个小组共植树的株数,然后用总株数减去第一、二、三、五组的株数即可得第四小组植树的株数.【详解】5个小组共植树为:10×5=50(株),50-9-12-9-8=12(株),即第四小组植树12株,故选A.【点睛】本题考查了平均数的定义,熟练掌握平均数的定义及求解方法是解题的关键.6、C【解析】
本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【详解】A、该方程是一元一次方程,故本选项错误.B、该方程是二元二次方程,故本选项错误.C、该方程是一元二次方程,故本选项正确.D、该方程分式方程,故本选项错误.故选C.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).7、D【解析】
根据阴影部分的面积与正方形ABCD的面积之比为2:3,得出阴影部分的面积为6,空白部分的面积为3,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.【详解】∵阴影部分的面积与正方形ABCD的面积之比为2:3,∴阴影部分的面积为×9=6,∴空白部分的面积为9−6=3,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×3=,∠CBE=∠DCF,∵∠DCF+∠BCG=90°,∴∠CBG+∠BCG=90°,即∠BGC=90°,设BG=a,CG=b,则ab=,又∵a2+b2=32,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+3,故选D.【点睛】此题考查了全等三角形的判定与性质、正方形的性质、勾股定理、完全平方公式的变形求值、以及三角形面积问题.解题时注意数形结合思想与方程思想的应用.8、A【解析】
根据频率=频数÷样本总数解答即可.【详解】用样本估计总体:在频数分布表中,54.5~57.5这一组的频数是6,那么估计总体数据落在54.5~57.5这一组的频率=0.12,故选A.【点睛】本题主要考查频率分布表、频率的意义与计算方法,频率的意义,每组的频率=小组的频数:样本容量.同时考查统计的基本思想即用样本估计总体的应用.9、D【解析】
连接AE,BE,DF,CF,可证明三角形AEB是等边三角形,利用等边三角形的性质和勾股定理即可求出边AB上的高线,同理可求出CD边上的高线,进而求出EF的长.【详解】解:连接AE,BE,DF,CF.
∵以顶点A、B为圆心,1为半径的两弧交于点E,AB=1,
∴AB=AE=BE,
∴△AEB是等边三角形,
∴边AB上的高线为EN=,
延长EF交AB于N,并反向延长EF交DC于M,则E、F、M,N共线,
则EM=1-EN=1-,
∴NF=EM=1-,
∴EF=1-EM-NF=-1.
故选:D.【点睛】本题考查正方形的性质和等边三角形的判定和性质以及勾股定理的运用,解题的关键是添加辅助线构造等边三角形,利用等边三角形的性质解答即可.10、B【解析】
根据正多边形的边数=360°÷每一个外角的度数,进行计算即可得解.【详解】解:n=360°÷45°=1.故选:B.【点睛】本题考查了多边形的外角,熟记正多边形的边数、每一个外角的度数、以及外角和360°三者之间的关系是解题的关键.11、B【解析】
先求出原函数的顶点坐标,再按照要求移动即可.【详解】解:函数y=2(x+1)2﹣1的顶点坐标为(﹣1,﹣1),点(﹣1,﹣1)沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度后对应点的坐标为(1,﹣2),即平移后抛物线的顶点坐标是(1,﹣2).故选:B.【点睛】本题考查函数的相关图像性质,能够求出顶点坐标是解题关键.12、B【解析】
试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和的条件,要使在实数范围内有意义,必须.故选B.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.二、填空题(每题4分,共24分)13、±3【解析】
∵=9,∴9的平方根是.故答案为3.14、【解析】
由矩形的性质可证明S△DFP=S△PBE,即可求解.【详解】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×5=5,∴S阴=5+5=10,故答案为:10.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△DFP=S△PBE.15、1.【解析】
根据直角三角形斜边中线的性质即可得.【详解】已知直角三角形斜边上的中线等于3,根据直角三角形斜边上的中线等于斜边的一半可得这个直角三角形的斜边长为1.故答案为:1.16、3(a+2)(a﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).17、2【解析】
由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【详解】解:∵正方形ABCD的面积为1,
∴BC=CD==1,∠BCD=90°,
∵E、F分别是BC、CD的中点,
∴CE=BC=,CF=CD=,
∴CE=CF,
∴△CEF是等腰直角三角形,
∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;
故答案为2.【点睛】本题考查正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解题关键.18、35.【解析】
利用四边形内角和得到∠BAD’,从而得到∠α【详解】如图,由矩形性质得到∠BAD’+∠α=90°;因为∠2=∠1=125°,所以∠BAD’=180°-∠2=55°,所以∠α=90°-55°=35°,故填35【点睛】本题主要考查矩形性质和四边形内角和性质等知识点,本题关键在于找到∠2与∠BAD互补三、解答题(共78分)19、(1)13+4;(2)-1.【解析】
(1)先把二次根式化简,然后去绝对值后合并即可;
(2)利用分母有理化和完全平方公式计算.【详解】解:(1)原式=3-(5-)+18
=3-5++18
=13+4;
(2)原式=4-(4+4+3)
=4-1-4
=-1.故答案为:(1)13+4;(2)-1.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20、见解析【解析】
(1)证明△APE≌△ACE,根据全等三角形的性质可得到PE=EC,再利用三角形的中位线定理证明DE∥AB,再加上条件EF∥BC可证出结论;【详解】证明:∵AE⊥CE,∴∠AEP=∠AEC=90°,在△AEP和△AEC中,∴△APE≌△ACE(ASA).∴PE=EC.∵BD=CD,∴DE为△CPB的中位线,∴DE∥AB.∵EF∥BC,∴四边形BDEF是平行四边形。【点睛】此题考查平行四边形的判定与性质,全等三角形的判定与性质,解题关键在于利全等三角形的判定进行求解21、(1)(1)8﹣x,30(8﹣x),280(8﹣x);(2)最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元【解析】
(1)设租用甲种客车x辆,根据题意填表格即可.(2)设租车的总费用为y元,则可列出关于x的解析式即为y=120x+2240,又因为学校组织330学生集体外出活动,则有不等式45x+30(8﹣x)≥330,求得x的取值范围,即可解答最节省费用的租车方案.【详解】解:(1)车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车8﹣x30(8﹣x)280(8﹣x)(2)当租用甲种客车x辆时,设租车的总费用为y元,则:y=400x+280(8﹣x)=120x+2240,又∵45x+30(8﹣x)≥330,解得x≥6,在函数y=120x+2240中,∵120>0,∴y随x的增大而增大,∴当x=6时,y取得最小值,最小值为2960.答:最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元.【点睛】此题考查一元一次不等式的应用,一次函数的应用,解题关键在于利用不等式求取的范围解答即可.22、(1)甲公司每天修建地铁千米,乙公司每天修建地铁千米;(2)①;②W最小值为440天【解析】
(1)甲公司每天修千米,乙公司每天修千米,根据题意列分式方程解答即可;(2)①由题意得,再根据题意列不等式组即可求出的取值范围;②写出与、之间的关系式,再根据一次函数的性质解答即可.【详解】解:(1)设甲公司每天修千米,乙公司每天修千米,根据题意得,,解得,经检验,为原方程的根,,,答:甲公司每天修建地铁千米,乙公司每天修建地铁千米;(2)①由题意得,,,又,;②由题意得,,即,,随的增大而增大,又,时,最小值为440天.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,分式方程的应用,解题的关键是从实际问题中整理出数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业灌溉水电设施管理与维护规定
- 焊接作业环境适应性分析与改善策略
- 高一化学教案:专题第二单元第一课时乙醇
- 2024届南安市中考化学对点突破模拟试卷含解析
- 2024高中化学第五章进入合成有机高分子化合物的时代3功能高分子材料课时作业含解析新人教版选修5
- 2024高中地理课时作业6流域的综合开发-以美国田纳西河流域为例含解析新人教版必修3
- 2024高中语文开学第一课学生观后感范文700字少年强中国强素材
- 2024高中语文第二单元置身诗境缘景明情赏析示例春江花月夜学案新人教版选修中国古代诗歌散文欣赏
- 2024高中语文精读课文一第1课3侍奉皇帝与走向人民作业含解析新人教版选修中外传记蚜
- 2024高考化学一轮复习第十章化学实验基础第一讲化学实验常用仪器和基本操作规范演练含解析新人教版
- 2024年山东省高中自主招生数学模拟试卷试题(含答案)
- (正式版)SHT 3227-2024 石油化工装置固定水喷雾和水(泡沫)喷淋灭火系统技术标准
- 古诗词常见的修辞手法讲课教案
- 科研项目评审评分表
- A5技术支持的课堂导入作业1—问题描述.针对日常教学中的某一主题针对教学目标、教学内容以及教学对象用简短的语言描述当前课堂导入环节中存在的问题和不足以及借助信息技术改进课堂导入的必要性
- 2-07端阳赛马节的传说
- 国家开放大学《土木工程力学(本)》章节测试参考答案
- 衣柜技术标准
- 法式情人阅读法
- 某隧道二衬检测报告范本(共13页)
- (完整版)临时用电施工合同
评论
0/150
提交评论