江苏无锡梁溪区四校联考2023年数学八下期末检测模拟试题含解析_第1页
江苏无锡梁溪区四校联考2023年数学八下期末检测模拟试题含解析_第2页
江苏无锡梁溪区四校联考2023年数学八下期末检测模拟试题含解析_第3页
江苏无锡梁溪区四校联考2023年数学八下期末检测模拟试题含解析_第4页
江苏无锡梁溪区四校联考2023年数学八下期末检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.同一平面直角坐标系中,一次函数与(为常数)的图象可能是A. B.C. D.2.如图,函数y=mx+n和y=﹣2x的图象交于点A(a,4),则方程mx+n=﹣2x的解是()A.x=﹣2 B.x=﹣3 C.x=﹣4 D.不确定3.一个直角三角形的两边长分别为2和,则第三边的长为()A.1 B.2 C. D.34.反比例函数y=kx的图象经过点M(﹣3,2A.(3,2) B.(2,3) C.(1,6) D.(3,﹣2)5.将抛物线向左平移2单位,再向上平移3个单位,则所得的抛物线解析式为()A. B.C. D.6.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,EC=2,则下列结论不正确的是()A.ED=2 B.AE=4C.BC= D.AB=87.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第()秒A.80 B.105 C.120 D.1508.等腰三角形的周长为20,设底边长为,腰长为,则关于的函数解析式为(为自变量)()A. B. C. D.9.赵老师是一名健步走运动的爱好者为备战2019中国地马拉松系列赛·广元站10千米群众健身赛,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图在每天健步走的步数这组数据中,众数和中位数分别是()A.2.2,2.3 B.2.4,2.3 C.2.4,2.35 D.2.3,2.310.下列从左到右的变形,是分解因式的是()A.2a2C.(a+3)(a-3)=a2二、填空题(每小题3分,共24分)11.函数y=的自变量x的取值范围是_____.12.已知直线在轴上的截距是-2,且与直线平行,那么该直线的解析是______13.两个全等的直角三角尺如图所示放置在∠AOB的两边上,其中直角三角尺的短直角边分别与∠AOB的两边上,两个直角三角尺的长直角边交于点P,连接OP,且OM=ON,若∠AOB=60°,OM=6,则线段OP=______.14.如图,是的中位线,平分交于,,则的长为________.15.等腰三角形中,两腰上的高所在的直线所形成的锐角为35°,则等腰三角形的底角为___________16.若分式方程无解,则__________.17.点A(a,﹣5)和(3,b)关于x轴对称,则ab=_____.18.根据中华人民共和国2017年国民经济和社会发展统计公报,我国年农村贫困人口统计如图所示根据统计图中提供的信息,预估2018年年末全国农村贫困人口约为______万人,你的预估理由是______.三、解答题(共66分)19.(10分)如图,长的楼梯的倾斜角为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角为45°,求调整后的楼梯的长.20.(6分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数.(如下表)每人加工零件数544530242112人数112632(1)写出这15人该月加工零件数的平均数、中位数和众数;(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?为什么?如果不合理,请你设计一个较为合理的生产定额,并说明理由.21.(6分)已知:如图,在中,延长到,使得.连结,.(1)求证:;(2)请在所给的图中,用直尺和圆规作点(不同于图中已给的任何点),使以,,,为顶点的四边形是平行四边形(只作一个,保留痕迹,不写作法).22.(8分)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF,(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE,若已知AB=2,CD=BC,请求出GE的长.23.(8分)某校初二年级以班为单位进行篮球比赛,第一轮比赛是先把全年级平分成、两个大组,同一个大组的每两个班都进行一场比赛,这样第一轮、两个大组共进行了20场比赛,问该校初二年级共有几个班?24.(8分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形.25.(10分)已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF求证:AC、EF互相平分.26.(10分)如图,平行四边形中,延长至使,连接交于点,点是线段的中点.(1)如图1,若,,求平行四边形的面积;(2)如图2,过点作交于点,于点,连接,若,求证:.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据一次函数的图像即可求解判断.【详解】由A,C图像可得函数y=mx+n过一,二,三象限,故m>0,n>0,故y=nx+m也过一,二,三象限,故A,C错误;由B,D图像可得函数y=mx+n过一三四象限,故m>0,n<0,故y=nx+m过一,二,四象限,故B正确,D错误;故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.2、A【解析】

把A(a,4)代入y=-1x求得a的值,得出A(-1,4),根据方程的解就是两函数图象交点的横坐标即可得出答案.【详解】解:∵y=-1x的图象过点A(a,4),

∴4=-1a,解得a=-1,

∴A(-1,4),

∵函数y=mx+n和y=-1x的图象交于点A(-1,4),

∴方程mx+n=-1x的解是x=-1.

故选A.【点睛】此题主要考查了一次函数与一元一次方程,关键是掌握一次函数与一元一次方程的关系.3、C【解析】

本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边2既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即2是斜边或直角边.【详解】当2和均为直角边时,第三边=;当2为斜边,为直角边,则第三边=,故第三边的长为或故选C.【点睛】此题考查勾股定理,解题关键在于分类讨论第三条边的情况.4、D【解析】

根据题意得,k=xy=﹣3×2=﹣6,再将A,B,C,D四个选项中点的坐标代入得到k=﹣6的点在反比例函数的图象上.【详解】根据题意得,k=xy=﹣3×2=﹣6∴将A(3,2)代入得到k=6,故不在反比例函数的图象上;将B(2,3)代入得到k=6,故不在反比例函数的图象上;将C(1,6)代入得到k=6,故不在反比例函数的图象上;将D(3,-2)代入得到k=﹣6的点在反比例函数的图象上.故选D.【点睛】本题考查了反比例函数图象上点的坐标特征,关键是运用xy=k解决问题.5、A【解析】

将抛物线向左平移2单位,再向上平移3个单位,根据抛物线的平移规律“左加右减,上加下减”可得新抛物线的解析式为,故选A.6、D【解析】

根据角平分线的性质以及锐角三角函数的定义和性质计算出各线段长度逐项进行判断即可.【详解】∵∠ACB=90°,∠A=30°∴∵BE平分∠ABC,ED⊥AB,EC=2∴,,故选项A正确∴,故选项B正确∴,故选项C正确∴,故选项D错误故答案为:D.【点睛】本题考查了三角形的线段长问题,掌握角平分线的性质以及锐角三角函数的定义是解题的关键.7、C【解析】

如图,分别求出OA、BC的解析式,然后联立方程,解方程就可以求出第一次相遇时间.【详解】设直线OA的解析式为y=kx,代入A(200,800)得800=200k,解得k=4,故直线OA的解析式为y=4x,设BC的解析式为y1=k1x+b,由题意,得,解得:,∴BC的解析式为y1=2x+240,当y=y1时,4x=2x+240,解得:x=120,则她们第一次相遇的时间是起跑后的第120秒,故选C.【点睛】本题考查了一次函数的运用,一次函数的图象的意义的运用,待定系数法求一次函数的解析式的运用,解答时认真分析求出一次函数图象的数据意义是关键.8、C【解析】

根据等腰三角形的腰长=(周长-底边长)÷2,把相关数值代入即可.【详解】等腰三角形的腰长y=(20-x)÷2=-+1.故选C.【点睛】考查列一次函数关系式;得到三角形底腰长的等量关系是解决本题的关键.9、B【解析】

中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【详解】由条形统计图中出现频数最大条形最高的数据是在第四组,故众数是2.4(万步);因图中是按从小到大的顺序排列的,最中间的步数都是2.3(万步),故中位数是2.3(万步).故选B.【点睛】此题考查中位数,条形统计图,解题关键在于看懂图中数据10、A【解析】

根据分解因式就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】2a2+4a=2a(a+2)x2-xy=x(a+3)(a-3)=a2-9x2+x-5=(x-2)(x+3)+1不是把一个多项式化为几个整式的积的形式,所以D【点睛】本题考查分解因式的定义,解题的关键是掌握分解因式的定义.二、填空题(每小题3分,共24分)11、x≤且x≠0【解析】

根据题意得x≠0且1﹣2x≥0,所以且.故答案为且.12、【解析】【分析】根据一次函数的性质可求得.对于直线在轴上的截距是b;k是斜率,决定直线的位置关系.【详解】因为,已知直线在轴上的截距是-2,所以,b=-2.又直线与直线平行,所以,k=3.故答案为:【点睛】本题考核知识点:一次函数.解题关键点:熟记一次函数解析式中系数的意义.13、【解析】

根据HL定理证明,求得,根据余弦求解即可;【详解】∵OM=ON,OP=OP,,∴,∵∠AOB=60°,∴,∵OM=6,∴.故答案是.【点睛】本题主要考查了直角三角形的性质应用,结合三角函数的应用是解题的关键.14、1【解析】

EF是△ABC的中位线,可得DE∥BC,又BD平分∠ABC交EF于D,则可证得等角,进一步可证得△BDE为等腰三角形,从而求出EB.【详解】解:∵EF是△ABC的中位线

∴EF∥BC,∠EDB=∠DBC

又∵BD平分∠ABC

∴∠EBD=∠DBC=∠EDB

∴EB=ED=1.

故答案为1.【点睛】本题考查的是三角形中位线的性质和等腰三角形的性质,比较简单.15、17.5°或72.5°【解析】

分两种情形画出图形分别求解即可解决问题.【详解】解:①如图,当∠BAC是钝角时,由题意:AB=AC,∠AEH=∠ADH=90°,∠EHD=35°,∴∠BAC=∠EAD=360°-90°-90°-35°=145°,∴∠ABC=;②如图,当∠A是锐角时,由题意:AB=AC,∠CDA=∠BEA=90°,∠CHE=35°,∴∠DHE=145°,∴∠A=360°-90°-90°-115°=35°,∴∠ABC=;故答案为:17.5°或72.5°.【点睛】本题考查等腰三角形的性质,四边形内角和定理等知识,解题的关键是用分类讨论的思想思考问题,属于中考常考题型.16、1【解析】

先把m看作已知,解分式方程得出x与m的关系,再根据分式方程无解可确定方程的增根,进一步即可求出m的值.【详解】解:在方程的两边同时乘以x-1,得,解得.因为原方程无解,所以原分式方程有增根x=1,即,解得m=1.故答案为1.【点睛】本题考查了分式方程的解法和分式方程的增根,正确理解分式方程无解与其增根的关系是解题的关键.17、1.【解析】

根据关于x轴对称的点的横坐标相同,纵坐标互为相反数可得a、b的值,继而可求得答案.【详解】∵点A(a,-5)和点B(3,b)关于x轴对称,∴a=3,b=5,∴ab=1,故答案为:1.【点睛】本题考查了关于x轴对称的点的坐标特征,熟练掌握是解题的关键.18、1700由统计图可知,2016~2017减少约1300万,则2017~2018减少约为1300万,故2018年农村贫困人口约为1700万.【解析】

根据统计图可以得到得到各年相对去年减少的人数,从而可以预估2018年年末全国农村贫困人口约为多少万人,并说明理由.【详解】解:2018年年末全国农村贫困人口约为1700万人,预估理由:由统计图可知,2016~2017减少约1300万,则2017~2018减少约为1300万,故2018年农村贫困人口约为1700万,故答案为1700、由统计图可知,2016~2017减少约1300万,则2017~2018减少约为1300万,故2018年农村贫困人口约为1700万.【点睛】本题考查用样本估计总体、条形统计图,解题的关键是明确条形统计图的特点,从中得到必要的解题信息.三、解答题(共66分)19、【解析】

在中,,∴∴,∴在中,,∴∴.20、(1)平均数为26件,中位数为24件,众数为24件;(2)合理.【解析】

(1)先根据加权平均数公式即可求得平均数,再将表中的数据按照从大到小的顺序排列,根据中位数和众数的概念求解即可;(2)应根据(1)中求出的中位数和众数综合考虑.【详解】解:(1)平均数==26(件),将表中的数据按照从大到小的顺序排列,可得出第8名工人的加工零件数为24件,且零件加工数为24的工人最多,故中位数为:24件,众数为:24件.答:这15人该月加工零件数的平均数为26件,中位数为24件,众数为24件.(2)24件较为合理,24既是众数,也是中位数,且24小于人均零件加工数,是大多数人能达到的定额.【点睛】本题主要考查了加权平均数、众数和中位数的概念:(1)一组数据中出现次数最多的数据叫做众数.(2)将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.21、(1)详见解析;(2)详见解析【解析】

(1)由四边形ABCD是平行四边形,得到AB=CD,AB∥CD,易得BE∥CD,由于BE=AB可得BE=CD,推出四边形BECD是平行四边形,再运用平行四边形的性质解答即可;(2)分别以C,E为圆心,以BE,BC的长为半径画弧,两弧交于一点F,则点F即为所求.【详解】(1)证明:∵中,∴,.又,,,四边形是平行四边形,.(2)如图:【点睛】本题考查了平行四边形的判定和性质,灵活运用平行四边形的判定和性质定理是解题的关键.22、(1)CF⊥BD,BC=CF+CD;(2)成立,证明详见解析;(3).【解析】试题分析:(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论(3)根据等腰直角三角形的性质得到BC=AB=4,AH=BC=2,求得DH=3,根据正方形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM=CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.试题解析:解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;(2)成立,∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,CF=BD∴∠ACB+∠ACF=90°,即CF⊥BD;∵BC=BD+CD,∴BC=CF+CD;(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.考点:四边形综合题.23、10个【解析】

设全年级共有2n个班级,则每一大组有n个班,每个班需参加(n-1)场比赛,则共有n(n-1)×场比赛,可以列出一个一元二次方程.【详解】解:设全年级个班,由题意得:,解得或(舍),,答:全年级一共10个班.【点睛】本题主要考查了有实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.24、(1)见解析(2)见解析【解析】

(1)由三角形中位线知识可得DF∥BG,GH∥BF,根据菱形的判定的判定可得四边形FBGH是菱形;

(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.【详解】(1)∵点F、G是边AC的三等分点,

∴AF=FG=GC.

又∵点D是边AB的中点,

∴DH∥BG.

同理:EH∥BF.

∴四边形FBGH是平行四边形,

连结BH,交AC于点O,

∴OF=OG,

∴AO=CO,

∵AB=BC,

∴BH⊥FG,

∴四边形FBGH是菱形;

(2)∵四边形FBGH是平行四边形,

∴BO=HO,FO=GO.

又∵AF=FG=GC,

∴AF+FO=GC+GO,即:AO=CO.

∴四边形ABCH是平行四边形.

∵AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论