浙江省台州市温岭市箬横镇东浦中学2022-2023学年八年级数学第二学期期末复习检测模拟试题含解析_第1页
浙江省台州市温岭市箬横镇东浦中学2022-2023学年八年级数学第二学期期末复习检测模拟试题含解析_第2页
浙江省台州市温岭市箬横镇东浦中学2022-2023学年八年级数学第二学期期末复习检测模拟试题含解析_第3页
浙江省台州市温岭市箬横镇东浦中学2022-2023学年八年级数学第二学期期末复习检测模拟试题含解析_第4页
浙江省台州市温岭市箬横镇东浦中学2022-2023学年八年级数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在长为31m,宽为10m的矩形空地上修建同样宽的道路(图中阴影部分),剩余的空地上种植草坪,使草坪的面积为540m1.设道路的宽为xm,根据题意,下面列出的方程正确的是()A.31x+10x﹣1x1=540B.31x+10x=31×10﹣540C.(31﹣x)(10﹣x)=540D.(31﹣x)(10﹣x)=31×10﹣5402.给出下列命题:(1)平行四边形的对角线互相平分;(2)矩形的对角线相等;(3)菱形的对角线互相垂直平分;(4)正方形的对角线相等且互相垂直平分.其中,真命题的个数是()A.2 B.3 C.4 D.13.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.4.下列图案中,中心对称图形的是()A. B. C. D.5.如图所示,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点A.1cm2 B.2cm26.根据二次函数y=-x2+2x+3的图像,判断下列说法中,错误的是()A.二次函数图像的对称轴是直线x=1;B.当x>0时,y<4;C.当x≤1时,函数值y是随着x的增大而增大;D.当y≥0时,x的取值范围是-1≤x≤3时.7.下列命题中是真命题的是()①4的平方根是2②有两边和一角相等的两个三角形全等③连结任意四边形各边中点的四边形是平行四边形④所有的直角都相等A.0个 B.1个 C.2个 D.3个8.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()年龄13141525283035其他人数30533171220923A.平均数 B.众数 C.方差 D.标准差9.点在直线上,则点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,双曲线与直线交于点M,N,并且点M坐标为(1,3)点N坐标为(-3,-1),根据图象信息可得关于x的不等式的解为()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,矩形ABCD中,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=8,DC=6,则BE的长为______.12.小明利用公式计算5个数据的方差,则这5个数据的标准差的值是_____.13.如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为_________.14.有一道题“先化简,再求值:,其中”.小玲做题时把“”错抄成“”,她的计算结果正确吗?______.(填正确或错误)15.如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.16.将2019个边长都为的正方形按如图所示的方法摆放,点,,分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为__.17.如图,小芳和爸爸正在散步,爸爸身高1.8m,他在地面上的影长为2.1m.若小芳比他爸爸矮0.3m,则她的影长为________m.18.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件__________使四边形AECF是平行四边形(只填一个即可).三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,直线与坐标轴交于,过线段的中点作的垂线,交轴于点.(1)填空:线段,,的数量关系是______________________;(2)求直线的解析式.20.(6分)现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.(1)根据题意,填写下表:快递物品重量(千克)0.5134…甲公司收费(元)22…乙公司收费(元)115167…(2)设甲快递公司收费y1元,乙快递公司收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>3时,小明应选择哪家快递公司更省钱?请说明理由.21.(6分)(1)先化简,再求值:,其中;(2)三个数4,,在数轴上从左到右依次排列,求a的取值范围.22.(8分)解方程(1)+=3(2)23.(8分)如图,已知BD是▱ABCD对角线,AE⊥BD于点E,CF⊥BD于点F.(1)求证:△ADE≌△CBF;(2)连结CE,AF,求证:四边形AFCE为平行四边形.24.(8分)在数学课上,老师出了这样一道题:甲、乙两地相距1400km,乘高铁列车从甲地到乙地比乘特快列车少用9h,已知高铁列车的平均行驶速度是特快列车的2.8倍。求高铁列车从甲地到乙地的时间.老师要求同学先用列表方式分析再解答.下面是两个小组分析时所列的表格:小组甲:设特快列车的平均速度为xkm/h.小组乙:高铁列车从甲地到乙地的时间为yh(1)根据题意,填写表格中空缺的量;(2)结合表格,选择一种方法进行解答.25.(10分)如图,将的边延长到点,使,交边于点.求证:若,求证:四边形是矩形26.(10分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为,所抽查的学生人数为.(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

把道路进行平移,可得草坪面积=长为31﹣x,宽为10﹣x的面积,把相关数值代入即可求解.【详解】解:把道路进行平移,可得草坪面积为一个矩形,长为31﹣x,宽为10﹣x,∴可列方程为:(31﹣x)(10﹣x)=2.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,是正确列出一元二次方程的关键.2、C【解析】

利用平行四边形的性质、矩形的性质、菱形的性质及正方形的性质分别判断后即可确定正确的选项.【详解】(1)平行四边形的对角线互相平分,正确,是真命题;(2)矩形的对角线相等,正确,是真命题;(3)菱形的对角线互相垂直平分,正确,是真命题;(4)正方形的对角线相等且互相垂直平分,正确,是真命题,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行四边形的性质、矩形的性质、菱形的性质及正方形的性质,属于基础题,难度不大.3、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B符合条件.故选B.4、A【解析】

根据中心对称图形的概念求解.【详解】A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、D【解析】

因为矩形的对边和平行四边形的对边互相平行,且矩形的对角线和平行四边形的对角线都互相平分,所以上下两平行线间的距离相等,平行四边形的面积等于底×高,所以第一个平行四边形是矩形的一半,第二个平行四边形是第一个平行四边形的一半依次可推下去.【详解】解:根据题意分析可得:∵四边形ABCD是矩形,∴O1A=O1C,∵四边形ABC1O1是平行四边形,,∴O1C1∥AB,∴BE=12BC∵S矩形ABCD=AB•BC,S▱ABC1O1=AB•BE=12AB•BC∴面积为原来的12同理:每个平行四边形均为上一个面积的12故平行四边形ABC5O5的面积为:10×1故选:D.【点睛】此题综合考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.6、B【解析】试题分析:,所以x=1时,y取得最大值4,时,y<4,B错误故选B.考点:二次函数图像点评:解答二次函数图像的问题,关键是读懂题目中的信息,正确化简出相应的格式,并与图像一一对应判断.7、C【解析】

根据平方根的概念、全等三角形的判定定理、中点四边形的性质判断即可.【详解】解:4的平方根是±2,①是假命题;有两边及其夹角相等的两个三角形全等,②是假命题;连结任意四边形各边中点的四边形是平行四边形,③是真命题;所有的直角都相等,④是真命题.故选C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、B【解析】分析:根据平均数的意义,众数的意义,方差的意义进行选择.详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数.故选B.点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9、B【解析】

先判断直线y=3x-5所经过的象限,据此可得出答案.【详解】解:直线中,k=3>0,b=-5<0,经过第一、三、四象限,点A在该直线上,所以点A不可能在第二象限.故选:B.【点睛】本题考查一次函数的图像,画出图像解题会更直观.10、D【解析】

求关于x的不等式<kx+b的解,就是看一次函数图象在反比例函数图象上方时点的横坐标的集合.【详解】∵点M坐标为(1,3),点N坐标为(-3,-1),∴关于x不等式<kx+b的解集为:-3<x<0或x>1,故选D.【点睛】此题主要考查了反比例函数与一次函数交点问题,利用图象求不等式的解时,关键是利用两函数图象的交点横坐标.二、填空题(每小题3分,共24分)11、【解析】∵四边形ABCD为矩形,

∴AB=DC=6,BC=AD=8,AD∥BC,∠B=90°.

∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,

∴∠DAC=∠D′AC.

∵AD∥BC,

∴∠DAC=∠ACB.

∴∠D′AC=∠ACB.

∴AE=EC.

设BE=x,则EC=8-x,AE=8-x.

∵在Rt△ABE中,AB2+BE2=AE2,

∴62+x2=(8-x)2,解得x=,即BE的长为.故答案是:.12、【解析】

先根据平均数的定义求出,再代入公式求出方差,然后求出方差的算术平方根即标准差的值.【详解】解:根据题意知,,则,.故答案为.【点睛】本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了平均数与方差,解题的关键是熟练掌握基本知识,属于中考常考题型.13、8或1【解析】

解:如图所示:①当AE=1,DE=2时,∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,∴平行四边形ABCD的周长=2(AB+AD)=8;②当AE=2,DE=1时,同理得:AB=AE=2,∴平行四边形ABCD的周长=2(AB+AD)=1;故答案为8或1.14、正确【解析】

先去括号,再把除法变为乘法化简,化简后代入数值判断即可.【详解】解:,因为x=或x=时,x2的值均为3,所以原式的计算结果都为7,所以把“”错抄成“”,计算结果也是正确的,故答案为:正确.【点睛】本题考查分式的化简求值,应将除法转化为乘法来做,并分解因式、约分,得到化简的目的.同时也考查了学生的计算能力.15、1260【解析】

首先根据外角和与外角和及每个外角的度数可得多边形的边数,再根据多边形内角和公式180(n-2)计算出答案.【详解】解:∵多边形的每一个外角都等于,∴它的边数为:,∴它的内角和:,故答案为:.【点睛】此题主要考查了多边形的内角和与外角和,根据多边形的外角和计算出多边形的边数是解题关键.16、【解析】

过正方形ABCD的中心O作OM⊥CD于M,作ON⊥BC于N,则易证△OEM≌△OFN,根据已知可求得一个阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和,即可得出结果.【详解】解:如图,过正方形的中心作于,作于,则,,且,,则四边形的面积就等于正方形的面积,则的面积是,得阴影部分面积等于正方形面积的,即是,则2019个正方形重叠形成的重叠部分的面积和故答案为:【点睛】本题考查了正方形的性质、全等三角形的判定与性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.17、1.2.【解析】

根据实物与影子的比相等可得小芳的影长.【详解】∵爸爸身高1.8m,小芳比他爸爸矮0.3m,

∴小芳高1.5m,

设小芳的影长为xm,

∴1.5:x=1.8:2.1,

解得x=1.2,

小芳的影长为1.2m.【点睛】本题考查了平行投影的知识,解题的关键是理解阳光下实物的影长与影子的比相等.18、AF=CE(答案不唯一).【解析】

根据平行四边形性质得出AD∥BC,得出AF∥CE,当AF=CE时,四边形AECF是平行四边形;根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE或FD=EB.根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC.添加∠AEC=∠FCA或∠DAE=∠DFC等得到AE∥FC,也可使四边形AECF是平行四边形.三、解答题(共66分)19、(1);(2)【解析】

(1)连接BC,根据线段垂直平分线性质得出BC=AC,然后根据勾股定理可得,进而得出;(2)根据一次函数解析式求出点A坐标,从而得出OA=6.设OC=x,在Rt△BOC中利用勾股定理建立方程求出OC的长,进而得出CA长度,然后利用三角形面积性质求出点M到x轴的距离,从而进一步得出M的坐标,之后根据M、C两点坐标求解析式即可.【详解】(1)如图所示,连接BC,∵MC⊥AB,且M为AB中点,∴BC=AC,∵△BOC为直角三角形,∴,∴;(2)∵直线与坐标轴交于两点,∴OA=6,OB=4,设OC=x,则BC=,∴,解得,∴△BCA面积==,设M点到x轴距离为n,则:,∴n=.∴M坐标为(3,2),∵C坐标为(,0)设CM解析式为:,则:,,∴,,∴CM解析式为:.【点睛】本题主要考查了一次函数与勾股定理的综合运用,熟练掌握相关概念是解题关键.20、(1)11,19,52,1;(2);y2=16x+3;(3)当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.【解析】

(1)根据甲、乙公司的收费方式,求出y值即可;(2)根据甲、乙公司的收费方式结合数量关系,找出y1、y2(元)与x(千克)之间的函数关系式;(3)x>3,分别求出y1>y2、y1=y2、y1<y2时x的取值范围,综上即可得出结论.【详解】解:(1)当x=0.5时,y甲=22×0.5=11;当x=1时,y乙=16×1+3=19;当x=3时,y甲=22+15×2=52;当x=3时,y甲=22+15×3=1.故答案为:11;19;52;1.(2)当0<x≤1时,y1=22x;当x>1时,y1=22+15(x-1)=15x+2.∴y2=16x+3(x>0);(3)当x>3时,当y1>y2时,有15x+2>16x+3,解得:x<3;当y2=y2时,有15x+2=16x+3,解得:x=3;当y1<y2时,有15x+2<16x+3,解得:x>3.∴当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.【点睛】本题考查了一次函数的应用,解题的关键是:(1)根据甲、乙公司的收费方式求出y值;(2)根据甲、乙公司的收费方式结合数量关系,找出、(元)与x(千克)之间的函数关系式;(3)分情况考虑>、=、<时x的取值范围.21、(1)-;(2)【解析】

(1)直接将括号里面通分运算,进而结合分式的加减运算法则计算得出答案;(2)根据题意得出不等式组,进而得出答案.【详解】解:(1)当时,代入得:原式(2)解:根据题意得,解得:,∴原不等式组的解集是﹐∴a的取值范围是﹒【点睛】此题主要考查了分式的化简求值以及不等式组的解法,正确掌握分式的混合运算法则是解题关键.22、(1)x=;(2)x=1【解析】

(1)按步骤:①去分母;②求出整式方程的解;③检验;④得出结论解分式方程;(2)按步骤:①去分母;②求出整式方程的解;③检验;④得出结论解分式方程;【详解】(1)+=33-2=3(2x-2)1=6x-6x=,当x=时,2x-2≠0,所以x=是方程的解;(2)x-3+2(x+3)=6x-3+2x+6=63x=3x=1.当x=1时,x2-9≠0,所以x=1是方程的解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23、(1)证明见解析;(2)结论:四边形AECF是平行四边形.理由见解析.【解析】

(1)利用平行四边形的性质,根据ASA即可证明;(2)首先证明四边形AECF是平行四边形.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD,∵AE⊥AD,∴∠EAD=90°,同理∠BCF=90°.∴∠EAD=∠BCF.在△AED和△CFB中∠ADB=∠CBD,AD=BC,∠EAD=∠BCF,∴△ADE≌△CBF.(2)结论:四边形AECF是平行四边形.理由:连接AC,∵四边形ABCD是平行四边形,∴AC平分BD,由(1)△ADE≌△CBF,∴AE=CF,∠AED=∠BFC,∴AE∥CF,∴四边形AECF是平行四边形.【点睛】本题考查平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24、(1)见解析;(2)见解析.【解析】

(1)根据路程=速度×时间填写即可;(2)小组甲:根据乘高铁列车从甲地到乙地比乘特快列车少用9h列方程求解,然后检验;小组乙:根据高铁列车的平均行驶速度是特快列车的2.8倍列方程求解,然后检验;【详解】(1)(2)利用乘高铁列车从甲地到乙地比乘特快列车少用9h,高铁列车的平均行驶速度是特快列车的2.8倍得出等量关系第一种:,解得:x=100,经检验x=100是原方程的解,2.8x=280,答:特快列车的平均行驶速度为100km/h,特高列车的平均行驶速度为280km/h;第

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论