版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.某个函数自变量的取值范围是x≥-1,则这个函数的表达式为()A.y=x+1 B.y=x2+1 C.y= D.y=2.下面的平面图形中,不能镶嵌平面的图形是()A.正三角形 B.正六边形 C.正四边形 D.正五边形3.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有()A. B. C. D.4.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,与BC相交于点F,过点B作BE⊥AD于点D,交AC延长线于点E,过点C作CH⊥AB于点H,交AF于点G,则下列结论:⑤;正确的有()个.A.1 B.2 C.3 D.45.如图,矩形在平面直角坐标系中,,,把矩形沿直线对折使点落在点处,直线与的交点分别为,点在轴上,点在坐标平面内,若四边形是菱形,则菱形的面积是()A. B. C. D.6.如图,在平行四边形中,对角线交于点,并且,点是边上一动点,延长交于点,当点从点向点移动过程中(点与点,不重合),则四边形的变化是()A.平行四边形→菱形→平行四边形→矩形→平行四边形B.平行四边形→矩形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→正方形→平行四边形D.平行四边形→矩形→菱形→正方形→平行四边形7.设、是方程的两根,则+=()A.-3 B.-1 C.1 D.38.某水果超市从生产基地以4元/千克购进一种水果,在运输和销售过程中有10%的自然损耗.假设不计其他费用,超市要使销售这种水果的利润不低于35%,那么售价至少为()A.5.5元/千克 B.5.4元/千克 C.6.2元/千克 D.6元/千克9.已知x=+1,y=-1,则的值为()A.20 B.16 C.2 D.410.如表记录了甲、乙、丙、丁四名学生最近几次数学综合测试成绩的平均数与方差:根据表中数据,要从中选择一名成好且发挥稳定的同学参加竟赛,应该选择()A.甲 B.乙 C.丙 D.丁二、填空题(每小题3分,共24分)11.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.12.二次根式在实数范围内有意义,x的取值范围是_____.13.一个弹簧不挂重物时长10cm,挂上重物后伸长的长度与所挂重物的质量成正比,如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为_____(不需要写出自变量取值范围)14.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.15.如图,在平面直角坐标系中,函数y=2x﹣3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x﹣3>kx+b的解集是_____.16.若点A、B在函数的图象上,则与的大小关系是________.17.如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为_____.18.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积为2,则k的值为______________.三、解答题(共66分)19.(10分)感知:如图①,在正方形中,点在对角线上(不与点、重合),连结、,过点作,交边于点.易知,进而证出.探究:如图②,点在射线上(不与点、重合),连结、,过点作,交的延长线于点.求证:.应用:如图②,若,,则四边形的面积为________.20.(6分)计算:①|-|+|-2|-|-1|②+-+(-1)1.21.(6分)计算(1);(2)22.(8分)甲、乙两位同学参加数学竞赛辅导,三项培训内容的考试成绩如下表,现要选拔一人参赛.(1)若按三项考试成绩的平均分选拔,应选谁参赛;(2)若代数、几何、综合分别按20%、30%、50%的比例计算平均分,应选谁参赛.代数几何综合甲859275乙70839023.(8分)数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?24.(8分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.25.(10分)已知x=﹣1,y=+1,求x2+xy+y2的值.26.(10分)如图,菱形ABCD的对角线AC、BD相交于点O,AB=10cm,OA=8cm.(1)求菱形ABCD的面积;(2)若把△OBC绕BC的中点E旋转180˚得到四边形OBFC,求证:四边形OBFC是矩形.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据被开方数大于等于0,分母不等于0分别求出各选项的函数的取值范围,从而得解.【详解】解:A、自变量的取值范围是全体实数,故本选项错误;B、自变量的取值范围是全体实数,故本选项错误;C、由x+1≥0得,x≥-1,故本选项正确;D、由x+10得,x-1,故本选项错误.故选:C.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2、D【解析】
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【详解】A、正三角形的每一个内角都是60°,放在同一顶点处6个即能镶嵌平面;B、正六边形每个内角是120°,能整除360°,故能镶嵌平面;C、正四边形的每个内角都是90°,放在同一顶点处4个即能镶嵌平面;D、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能镶嵌平面,故选D.【点睛】本题考查了平面镶嵌(密铺),用一般凸多边形镶嵌,用任意的同一种三角形或四边形能镶嵌成一个平面图案.因为三角形内角和为180°,用6个同一种三角形就可以在同一顶点镶嵌,而四边形的内角和为360°,用4个同一种四边形就可以在同一顶点处镶嵌.用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.3、D【解析】
由等腰直角三角形的性质可得AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO,由“ASA”可证△ADO≌△CEO,△CDO≌△BEO,由全等三角形的性质可依次判断.【详解】∵在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,∴AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO∵∠DOE=90°,∴∠COD+∠COE=90°,且∠AOD+∠COD=90°∴∠COE=∠AOD,且AO=CO,∠A=∠ACO=45°,∴△ADO≌△CEO(ASA)∴AD=CE,OD=OE,故④正确,同理可得:△CDO≌△BEO∴CD=BE,∴AC=AD+CD=AD+BE,故①正确,在Rt△CDE中,CD2+CE2=DE2,∴AD2+BE2=DE2,故②正确,∵△ADO≌△CEO,△CDO≌△BEO∴S△ADO=S△CEO,S△CDO=S△BEO,∴△ABC的面积等于四边形CDOE面积的2倍;故③正确,综上所述:正确的结论有①②③④,故选D.【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,熟练运用等腰直角三角形的性质是本题的关键.4、D【解析】
①②正确,只要证明△BCE≌△ACF,△ADB≌△ADE即可解决问题;③正确,只要证明GB=GA,得到△BDG是等腰直角三角形,即可得到;④正确,求出∠CGF=67.5°=∠CFG,则CF=CG=CE,然后AE=AC+CE=BC+CG,即可得到结论;⑤错误,作GM⊥AC于M.利用角平分线的性质定理即可证明;【详解】解:∵AD⊥BE,∴∠FDB=∠FCA=90°,∵∠BFD=∠AFC,∴∠DBF=∠FAC,∵∠BCE=∠ACF=90°,BC=AC,∴△BCE≌△ACF,∴EC=CF,AF=BE,故①正确,∵∠DAB=∠DAE,AD=AD,∠ADB=∠ADE=90°,∴△ADB≌△ADE,∴BD=DE,∴AF=BE=2BD,故②正确,如图,连接BG,∵CH⊥AB,AC=AB,∴BH=AH,∠BHG=∠AHG=90°∵HG=HG,∴△AGH≌△BGH,∴BG=AG,∠GAH=∠GBH=22.5°,∴∠DGB=∠GAH+∠GBH=45°,∴△BDG是等腰直角三角形,∴BD=DG=DE;故③正确;由△ACH是等腰直角三角形,∴∠ACG=45°,∴∠CGF=45°+22.5°=67.5°,∵∠CFG=∠DFB=90°-22.5°=67.5°,∴∠CGF=∠CFG,∴CG=CF,∵AB=AE,BC=AC,CE=CF=CG,又∵AE=AC+CE,∴AB=BC+CG,故④正确;作GM⊥AC于M,由角平分线性质,GH=GM,∴△AGH≌△AGM(HL),∴△AGH的面积与△AGM的面积相等,故⑤错误;综合上述,正确的结论有:①②③④;故选择:D.【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线的性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题.5、C【解析】
如图,连接AD,根据勾股定理先求出OC的长,然后根据折叠的性质以及勾股定理求出AD、DF的长,继而作出符合题意的菱形,分别求出菱形的两条对角线长,然后根据菱形的面积等于对角线积的一半进行求解即可.【详解】如图,连接AD,∵∠AOC=90°,AC=5,AO=3,∴CO==4,∵把矩形沿直线对折使点落在点处,∴∠AFD=90°,AD=CD,CF=AF=,设AD=CD=m,则OD=4-m,在Rt△AOD中,AD2=AO2+OD2,∴m2=32+(4-m)2,∴m=,即AD=,∴DF===,如图,过点F作FH⊥OC,垂足为H,延长FH至点N,使HN=HF,在HC上截取HM=HD,则四边形MFDN即为符合条件的菱形,由题意可知FH=,∴FN=2FH=3,DH=,∴DM=2DH=,∴S菱形MFDN=,故选C.【点睛】本题考查了折叠的性质,菱形的判定与性质,勾股定理等知识,综合性质较强,有一定的难度,正确添加辅助线,画出符合题意的菱形是解题的关键.6、A【解析】
根据图形结合平行四边形、矩形、菱形的判定逐项进行判断即可.【详解】解:点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,
当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,
当15°<∠EOD<75°时,四边形AFCE为平行四边形,
当∠EOD=75°时,∠AEF=90°,四边形AFCE为矩形,
当75°<∠EOD<105°时,四边形AFCE为平行四边形,
故选A.【点睛】本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力.7、B【解析】
根据一元二次方程根与系数的关系解答即可.【详解】解:∵、是方程的两根,∴+=-1.故选:B【点睛】本题考查了一元二次方程根与系数的关系,若是一元二次方程的两个根,则.8、D【解析】
设这种水果每千克的售价为x元,购进这批水果m千克,根据这种水果的利润不低于35%列不等式求解即可.【详解】设这种水果每千克的售价为x元,购进这批水果m千克,根据题意,得(1-10%)mx-4m≥4m×35%,解得x≥6,答:售价至少为6元/千克.故选D.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.9、A【解析】
原式利用完全平方公式化简,将x与y的值代入计算即可求出值.【详解】当x=+1,y=-1时,x2+2xy+y2=(x+y)2=(+1+-1)2=(2)2=20,故选A.【点睛】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.10、A【解析】
根据平均数和方差的意义进行解答即可.【详解】从平均数看,成绩最好的是甲、丙同学,从方差看,甲方差小,发挥最稳定,所以要从中选择一名成绩好且发挥稳定的同学参加竞赛,应该选择甲,故选A.【点睛】本题考查了平均数和方差,熟练掌握它们的意义是解题的关键.二、填空题(每小题3分,共24分)11、(3,1).【解析】∵四边形ABCD为平行四边形.∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,∴C(3,1).12、x≤1【解析】
根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,1﹣x≥0,解得,x≤1,故答案为x≤1.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.13、y=3x+1【解析】
根据题意可知,弹簧总长度y(cm)与所挂物体质量x(kg)之间符合一次函数关系,可设y=kx+1.代入求解.【详解】弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为y=3x+1,故答案为y=3x+1【点睛】此题考查根据实际问题列一次函数关系式,解题关键在于列出方程14、3.【解析】试题分析:点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质,则AE⊥BC,BE=CE=3,在Rt△ABE中,由勾股定理得.故答案为3.考点:3.翻折变换(折叠问题);3.勾股定理;3.平行四边形的性质.15、x>1.【解析】把点P(m,1)代入y=1x﹣3即可得1m-3=1,解得m=1,所以点P的坐标为(1,1),观察图象可得不等式1x﹣3>kx+b的解集是x>1.16、【解析】
将点A、B分别代入函数解析式中,求出m、n的值,再比较与的大小关系即可.【详解】点A、B分别代入函数解析式中解得∵∴故答案为:.【点睛】本题考查了一次函数的问题,掌握一次函数的性质和代入求值法是解题的关键.17、【解析】
先根据折叠的性质得∠EAB=∠EAN,AN=AB=8,再根据正方形的性质得AB∥CD,则∠EAB=∠F,所以∠EAN=∠F,得到MA=MF,设CM=x,则AM=MF=4+x,DM=DC-MC=8-x,在Rt△ADM中,根据勾股定理,解得x,然后利用MN=AM-AN求解即可.【详解】解:∵△ABE沿直线AE翻折,点B落在点N处,∴AN=AB=8,∠BAE=∠NAE,∵正方形对边AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,设CM=x,∵AB=2CF=8,∴CF=4,∴DM=8﹣x,AM=FM=4+x,在Rt△ADM中,由勾股定理得,AM2=AD2+DM2,即(4+x)2=82+(8﹣x)2,解得x=,所以,AM=4+4=8,所以,NM=AM﹣AN=8﹣8=.故答案为:.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,对应边和对应角相等,也考查了正方形的性质和勾股定理,熟练掌握正方形的性质及折叠的性质并能正确运用勾股定理是解题的关键.18、1【解析】
设反比例函数的解析式是:y=,设A的点的坐标是(m,n),则AB=m,OB=n,mn=k.根据三角形的面积公式即可求得mn的值,即可求得k的值.【详解】设反比例函数的解析式是:y=,设A的点的坐标是(m,n).
则AB=m,OB=n,mn=k.
∵△ABP的面积为2,
∴AB•OB=2,即mn=2
∴mn=1,则k=mn=1.
故答案是:1.【点睛】此题考查反比例函数系数k的几何意义,解题关键在于掌握过双曲线上的任意一点分别一条坐标轴作垂线,连接点与原点,与坐标轴围成三角形的面积是|k|.三、解答题(共66分)19、探究:见解析;应用:【解析】
探究:由四边形是正方形易证.可得,,由及.可得.可得即可证;应用:连结,可得三角形DEF是等腰三角形,利用勾股定理,分别求DF、FC的长度,再别求和的面积即可.【详解】探究:四边形是正方形,,..又,.,.,..又....应用:(提示:连结,分别求和的面积)连结由=2,∠FED=90°由勾股定理可得:FD=可得:∵CD=1,∠FCD=90°由勾股定理可得:FC=可得:∴【点睛】本题考查了正方形的性质、三角形全等以及勾股定理的运用,灵活运用正方形性质和利用勾股定理计算长度是解题的关键.20、①3-2;②4.5.【解析】
(1)原式利用绝对值的代数意义化简,计算即可得到结果.(2)本题涉及三次根式、二次根式化简、平方3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.根据实数运算法则即可得到结果.【详解】解:①|-|+|-2|-|-1|=-+2--+1=3-2;②+-+(-1)1=2+2-0.5+1=4.5.【点睛】(1)本题考查了实数运算,熟练掌握运算法则是解题的关键.(2)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握三次根式、二次根式、平方等考点的运算.21、(1)(2)【解析】
(1)根据二次根式的混合运算进行计算即可。(2)根据完全平方式和平方差公式展开,再根据二次根式的混合运算进行计算即可【详解】解:(1)原式==(2)原式===【点睛】本题考查了二次根式的混合运算,熟练掌握完全平方式和平方差公式和二次根式的混合运算法则是解题的关键22、(1)选择甲;(2)选择乙.【解析】
(1)分别求出甲、乙的算术平均数进行选择即可;(2)分别求出甲、乙的加权平均数进行选择.【详解】解:(1),∵∴选择甲;(2)∵∴选择乙.故答案为(1)选择甲;(2)选择乙.【点睛】本题考查了算术平均数和加权平均数的求法.23、旗杆的高度为12米.【解析】
因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度AB=x米,则绳子的长度AC=(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】设旗杆高AB=xm,则绳子长为AC=(x+1)m.在Rt△ABC中,∠ABC=90°,由勾股定理得AB2+BC2=AC2,所以x2+52=(x+1)2.解得x=12m.所以旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,勾股定理揭示了直角三角形三边长之间的数量关系:直角三角形两直角边的平方和等于斜边的平方.当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解这在几何的计算问题中是经常用到的,请同学们熟记并且能熟练地运用它.24、(1)见解析;(2)∠BDF=18°.【解析】
(1)先证明四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《翡翠培训资料》课件
- 《证券买卖技巧教案》课件
- 《证券基金销售培训》课件
- 单位管理制度集粹汇编员工管理篇
- 单位管理制度分享大全【人力资源管理篇】
- 《社区工作实务》课件
- 单位管理制度范例选集【人力资源管理篇】十篇
- 单位管理制度范例合集职工管理十篇
- 单位管理制度呈现合集【人事管理】十篇
- 寒假自习课 25春初中地理八年级下册人教版教学课件 第八章 第二节 干旱的宝地-塔里木盆地 第2课时 油气资源的开发
- 2023年鞍山市海城市教育局毕业生招聘笔试真题
- 北京2025年首都医科大学附属北京友谊医院招聘140人历年参考题库(频考版)含答案解析
- 辽宁省抚顺县2024-2025学年九年级上学期期末物理试卷(含答案)
- 2024-2025学年安徽省合肥市巢湖市三年级数学第一学期期末达标测试试题含解析
- 2023-2024人教版上学期小学英语三年级上册期末试卷
- 冬季施工阶段安全事故案例分析及对策
- 造船厂全套作业指导书
- 施工现场消防安全操作规程
- A4标签打印模板
- (完整版)工程项目管理组织机构
- 工程质量检测内容包括哪些?
评论
0/150
提交评论