促进迁移的有效教学有_第1页
促进迁移的有效教学有_第2页
促进迁移的有效教学有_第3页
促进迁移的有效教学有_第4页
促进迁移的有效教学有_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文格式为Word版,下载可任意编辑——促进迁移的有效教学有数学学识之间有着分外精细的内在联系,好多新学识在确定的条件下可以转化为旧学识后去熟悉和理解。迁移就是我们经常使用的一种方法,它是一种学习对另一种学习的影响,其实质就是让学生运用旧学识探索新学识、察觉新规律,从而不断重组自己的认知布局。如何把新旧学识结合在一起,培养学生的创造才能,是每个老师都会面临的实际问题。实践说明,迁移活动的实现,还有赖于学生主体作用的发挥和教师的正确引导。教师应根据不同教材、不可怜况,选择适当的方法,使学识的迁移能顺遂实现。

一、沟通联系促创造

数学学识之间有着分外精细的内在联系,在教学时,教师要沟通新旧学识的联系,创设条件,使新学识转化为旧知,从而顺遂实现迁移。如在教学“小数除以小数”时,我是这样举行教学的。

1.复习稳定。先计算:15.6÷12,3.64÷52,学生独立解答后简要复述计算方法。

2.创设情境,提出问题。利用教材给出的问题情境,要求学生提出解决问题的方法。即:求7.65是0.85的多少倍,用除法计算,列式为7.65÷0.85。与复习题对比,不同之处是除数是小数的除法。

3.回想过去,创造方法。我们学过除数是整数的小数除法,现在请大家想一想,除数是小数的理应怎样计算?

学生独立斟酌,创造新的计算方法。

(1)将单位“米”转化成“厘米”来计算:7.65米=765厘米,0.85米=85厘米,765÷85=9。

(2)根据商不变的性质,把7.65和0.85同时扩大100倍,765÷85=9。

然后问学生:你们是怎么察觉创造的?

除数是整数的小数除法我们已经学过了,今天展现了除数是小数的小数除法,我想:只要把小数变成整数,我们不就都会做了?因此我们就运用商不变的性质把被除数和除数同时扩大100倍,765除以85的商与7.65除以0.85的商是一样的。

为了使学生进一步理解小数除法的计算方法,我持续追问:1.26÷2.8又该如何计算呢?学生经过对比连忙察觉,把被除数和除数同时扩大10倍效果最好。

从除数是整数的小数除法(旧学识)到除数是小数的小数除法(新学识),经过学生沟通新旧学识的联系,再加上自己的自主创造,逐步理解了除数是小数的除法的计算方法。

二、探索共性促创造

在学生的认知布局中,是否有适当的起固定作用的观念可以利用,更加是是否有处于较高抽象概括水平的起固定作用的观念为创造供给最正确固着点,是促进积极迁移的根本保证,也是举行创造的首要因素。为此,教师要擅长找到新问题与原有阅历的好像性,找到生长点,并合理利用和高明引导。

如在教学“角的度量”时,就可以引导学生迁移长度的测量阅历,创造出量角的工具——量角器。

1.通过对比,引发创造需要。在教学中我先出示两个凭眼睛不易直接看出大小的角,让学生自主选择对比大小的方法。学生很轻易想到让这两个角的顶点重合,一条边重合,看另一条边,哪个角的另一条边在外,哪个角就大。再追问,较大的角到底对比小的角大多少呢?假使需要精确地对比,该怎么办?从而激发认知冲突,引发测量需要,催发创造胚芽。

2.通过回想,唤醒已有阅历。接着,我又引导学生回想长度单位的产生过程和测量方法。一般地,人们先统一地以固定的一段长为标准(如1厘米),用它去量较短的物体;但在测量较长物体时,察觉用1厘米这个标准去量太麻烦,于是,人们就创造出1分米;当用1分米去量更长的物体时,察觉又对比麻烦,人们于是创造出1米。经这么一梳理,学生领悟到:度量在本质上就是先选定适合的度量单位,再以此为标准去测量物体的长度,看被测量的物体上包含多少个这样的单位,进而得出测量结果。当测量结果得不到整数,需要更精确的测量时,人们又把这个单位平均分成10份、100份、1000份……(当然,其他份数也行)从而得到一个个更小的度量单位,再用这些更小的单位去度量,直到得出对比精确的测量结果。这样,就将“角的度量”这一新知置于“量的度量”整体的认知布局中,促使学生由长度度量迁移到角的度量上来。

3.通过探索共性,逐步创造工具。在此根基上,引导学生联想:现在,要对比角的大小,你能不能从长度单位及其测量工具中受到启发,自己也来动手创造一个量角的工具呢?经过充分的自主探索和合作交流,终究有学生提出:我们也可以先选定一个角,把它作为标准。生活中最常见的是直角,可以把它平均分成10份,这样就得到10个小角,再用这些小角去度量其他的角。笔者认可了这一创意,进而师生合作,创造出量角工具——直角器。

然后进一步引导,当用这些小角测量有些角得不到整数结果时,怎么办?学生认为这时就把每个小角再平均分成10份、100份……从而得到一个个小小角,再用这些小小角去测量,直到量出对比精确的结果为止。结果,利用课件表示了这一精细化的过程,同时指出为了便于度量和对比,数学上统一规定:把一个直角平均分成9个小角,然后把每个小角平均分成10份,并规定这时每个小小角的大小为1度,写作1°,就把它作为角的度量单位之一。

然而,这样的量角器终究还嫌粗糙。于是,我又引导学生尝试评价直角器。有学生指出:这个直角器能直接量出锐角的度数,但不能便当地量出比直角大的角的大小。然后再创造出平角器、周角器。经过一番探索和类比,师生合作,终究创造出常见的量角器。这时,我再介绍量角器的产生背景、构造特点、设计原理和度量方法等,学生就会有意义地采纳,并会欣然采纳。他们在创造的过程中实现了对角的度量这一数学学识与技能的深刻理解和主动建构,巩固了创造性地解决问题的才能,进展了度量意识。

三、类比推理促创造

类比是根据两个或两类事物的若干属性一致,已知其中一个或一类事物还具有某一属性,从而推出另一个或另一类事物也具有某一属性的斟酌方法。小学数学中,新学识一般是旧学识的延迟或组合,两者之间有好多共同属性。新旧学识的共同点越多,越轻易实现学识迁移。如在教学“整数加(减)法”时,教师需要让学生借助直观操作和在计数器上拨珠等方式,使其明白算理:只有在计数单位一致时,才能把计数单位的个数直接相加(减)。在教学“小数加(减)法”时,教师仍要让学生持续领悟并强化这种观念,使之越来越稳定和明显。这样,在学习“异分母分数加(减)法”时,学生才有可能迁移算理。学生从中深刻领悟到,分数加法的算理与整数加法、小数加法是一样的,都是把一致计数单位的个数直接相加。这样,学生对加(减)法算理的理解就会达成概括化的程度,即使暂时遗忘了算法,也能自主创造出来。

此外,在引导学生探寻乘法调配律中的算理时也可以这样做,如简算47×78+53×78时,用(47+53)×78,其实就是把“78”看作一个单位,原式就变成47个78的和加53个78的和=(47+53)个78的和。我还让学生尝试简算4.7×78+53×7.8,大量学生觉得困难,但有学生把原式转化为4.7×78+5.3×78=(4.7+5.3)×78,即先统一用“78”做单位,再根据积的变化规律变形,于是得到4.7个78的和加5.3个78的和等于10个78的和,从而把整数乘法的运算律迁移到小数乘法的运算中来,创造性地解决了问题。

在教学中,要努力透露新旧学识之间的联系,尽力创设类比情境,只要学生能在已学的根基上类推的,尽量引导他们自己类推出应学的新学识。

四、运用冲突促创造

事实上,旧知对于新知的影响并非只有正迁移,有时也会有负迁移。假设已有的阅历在学识探究中产生负迁移时,就让学生在冲突中探索,创造出新学识。

如在教学“3的倍数的特征”时,先复习2和5的倍数的特征,然后让学生说说自己对3的倍数的特征的揣摩。

第一次探索:让学生举例验证揣摩,学生察觉依据判断2和5的倍数的特征的阅历,不能运用于3的倍数的特征的揣摩。

其次次探索:让学生从若干张数字卡片肆意摸出几张,组成不同的数,看是不是3的倍数,察觉有的是,有的不是。

第三次探索:(1)是3的倍数的数:让学生借助计数器,在拨一拨、数一数、比一比、换一换的过程中察觉3的倍数的特征。

(2)不是3的倍数的数:变换数学卡片的位置,形成新数,看是不是3的倍数。

学生通过以上活动,察觉判断一个数是不是3的倍数,不能像判断一个数是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论