概论第6-4章-纳米材料_第1页
概论第6-4章-纳米材料_第2页
概论第6-4章-纳米材料_第3页
概论第6-4章-纳米材料_第4页
概论第6-4章-纳米材料_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、纳米科技诞生

1959年,著名物理学家、诺贝尔奖获得者理查德·费曼在一次讲演中指出:从石器时代开始,所有的技术革新都与把物质做成有用的形态有关,而从物理学的规律来看,不能排除从单个分子甚至原子出发而组装制造物品的可能性。费曼——纳米科技之父

原子排成的“原子”字样第一节纳米材料概述

1982年,科学家发明研究纳米的重要工具-扫描隧道显微镜。使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文名字后,中国科学院北京真空物理实验室自如地操纵原子成功写出“中国”二字,标志着我国开始在国际纳米科技领域占有一席之地。原子科学家发现,不同的原子,大小也不同。一个最小的细菌里面大约可以容纳20亿个原子。氢原子的直径为1埃。化学家常常自豪地说:“化学是一门在原子分子水平上研究物质的结构、性质、变化规律和应用的科学。”但是真正“看见”原子和分子却是20世纪80年代后期的事,距离道尔顿提出原子论的时间差不多有2个世纪。

扫描隧道显微镜不仅作为观察物质表面结构的重要手段,而且可以作为在极其细微的尺度──即纳米尺度(1nm=10-9m)上实现对物质表面精细加工的新奇工具

STM具有空间的高分辨率(横向可达0.1nm,纵向可达0.01nm),能直接观察到物质表面的原子结构。

基本原理是基于量子隧道效应和扫描。

用一个极细的针尖(针尖头部为单个原子)去接近样品表面,当针尖和表面靠得很近时(<1nm),针尖头部原子和样品表面原子的电子云发生重迭,若在针尖和样品之间加上一个偏压、电子便会通过针尖和样品构成的势垒而形成隧道电流。电子从一极通过隧道效应穿过空间势垒到另一极,形成隧道电流。电流大小取决于针尖与表面间距及表面电子状态

通过控制针尖与样品表面间距的恒定并使针尖沿表面进行精确的三维移动,就可把表面的信息;(表面形貌和表面电子态)记录下来。

AFM弥补STM的局限

1986年宾尼戈等人发明了利用激光检测针尖与表面相互作用进行表面成像的分析仪器。该仪器称为原子力显微镜(AFM)。

STM与AFM共同构成了现今称之为扫描探针显微镜(SPM)的两大主体技术。AFM又弥补了STM的局限,使被测试样扩大到非导电领域。

目前除了隧道显微镜(STM)、原子力显微镜(AFM)以外,还有近场光学显微镜(NSOM)、侧面力显微镜(IFM)、等。但大量还处在实验室的产品研发阶段。由于它们都是用探针通过扫描系统来获取图像,因此这类显微镜统称为扫描探针显微镜(SPM)。二、纳米技术与纳米材料的概念

过去,人们只注意原子、分子或者宏观物质,常常忽略纳米这个中间领域,而这个领域大量存在于自然界,只是以前没有认识到这个尺度范围的性能。

纳米材料其实并不神密和新奇,自然界中广泛存在着天然形成的纳米材料,如蛋白石、陨石碎片、动物的牙齿、海洋沉积物等就都是由纳米微粒构成的。人工制备纳米材料的实践也已有1000年的历史,中国古代利用蜡烛燃烧之烟雾制成碳黑作为墨的原料和着色的染料,就是最早的人工纳米材料。另外,蜜蜂、海龟不迷路----体内用纳米磁性微粒(相当于生物罗盘)。二、纳米技术与纳米材料的概念纳米(nm)是一种长度单位,人的一根头发丝的直径相当于6万个纳米。纳米小得可爱,却威力无比,它可以对材料性质产生影响,并发生变化,使材料呈现出极强的活跃性。科学家们说,纳米这个“小东西”将给人类生活带来的震憾,会比被视为迄今为止影响现代生活方式最为重要的计算机技术更深刻、更广泛、更持久。

1m=1000mm;1mm=1000μm1μm=1000nm;1纳米等于10埃

1.纳米技术

纳米科技是90年代初迅速发展起来的新的前沿科研领域。指在1-100nm尺度内,研究电子、原子和分子运动规律、特性的高新技术学科。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。2.纳米材料

纳米材料又称为超微颗粒材料,由纳米粒子组成,一般是指尺寸在1~100nm间的粒子(与病毒的尺寸相当),是处在原子簇和宏观物体交界的过渡区域。纳米材料可分为两个层次:纳米超微粒子与纳米固体材料。纳米超微粒子是指粒子尺寸为1-100nm的超微粒子,纳米固体是指由纳米超微粒子制成的固体材料。三、纳米材料的分类1.按结构:零维纳米材料:指空间三维尺度均在纳米尺度以内的材料,如纳米粒子、原子团簇等一维纳米材料:有两维处于纳米尺度的材料,如纳米线纳米管二维纳米材料:在三维空间有一维在纳米尺度的材料,如超薄膜

三维纳米材料(纳米固体材料):指由尺寸小于15nm的超微颗粒在高压力下压制成型,或再经一定热处理工序后所生成的致密性固体材料。纳米固体材料的主要特征是具有巨大的颗粒间界面,如5nm颗粒所构成的固体每立方厘米将含1019个晶界,从而使得纳米材料具有高韧性。纳米颗粒型材料也称纳米粉末,一般指粒度在100nm以下的粉末或颗粒。由于尺寸小,比表面大和量子尺寸效应等原因,它具有不同于常规固体的新特性。用途:

高密度磁记录材料、吸波隐身材料、磁流体材料、防辐射材料、单晶硅和精密光学器件抛光材料、微芯片导热基与布线材料、微电子封装材料、光电子材料、电池电极材料、太阳能电池材料、高效催化剂、高效助燃剂、敏感元件、高韧性陶瓷材料、人体修复材料和抗癌制剂等。奇妙的碳纳米管

1991年,日本科学家饭岛澄男发现碳纳米管。这是石墨中一层或若干层碳原子卷曲而成的笼状“纤维”,内部是空的,外部直径只有几到几十纳米,长度可达数微米甚至数毫米。这样的材料很轻,但很结实。它的密度是钢的1/6,而强度却是钢的100倍。

碳纳米管本身有非常完美的结构,意味着它有好的性能。它在一维方向上的强度可以超过钢丝强度,它还有其他材料所不具备的性能:非常好的导电性能、导热性能和电性能。

碳纳米管尺寸尽管只有头发丝的十万分之一,但它的导电率是铜的1万倍,它的强度是钢的100倍而重量只有钢的六分之一。它像金刚石那样硬,却有柔韧性,可以拉伸。它的熔点是已知材料中最高的。纳米碳管的细尖极易发射电子。用于做电子枪,可做成几厘米厚的壁挂式电视屏,这是电视制造业的发展方向。

然而,碳纳米管作为一种新型材料被发现至今已有十余年,却尚未得到工业应用。超高的成本使国际市场90%高纯度的碳纳米管价格高达1000-2000美元/克,一般纯度的碳纳米管价格也在60美元/克,远远高出黄金的价格。多孔纳米线纳米膜材料纳米薄膜是指尺寸在纳米量级的晶粒(或颗粒)构成的薄膜以及每层厚度在纳米量级的单层或多层膜。纳米材料分类2.按组成可分为:金属纳米材料半导体纳米材料有机和高分子纳米材料复合纳米材料:无机粒子与有机高分子复合材料,无机半导体的核壳结构纳米材料分类3.

按材料物性可分为:

纳米半导体纳米磁性材料纳米非线性光学材料纳米铁电体纳米超导材料纳米热电材料纳米材料分类4.按应用领域可分为:纳米电子材料纳米光电子材料纳米生物医药材料纳米敏感材料纳米储能材料四、纳米科技研究的重要性

纳米科技与基因工程和智能科技一起被称为“21世纪高科技三剑客”,在21世纪初正式登上世界经济舞台.纳米科技的兴起,孕育了一个新的经济模式------纳米经济的诞生.

钱学森(1991):“我认为,纳米左右和纳米以下的结构是下一阶段科技发展的重点,会是一次技术革命,从而将在21世纪又是一次产业革命。”

传统化学的研究对象通常包含着天文数字的原子或分子,例如,1克水包含了约3.346*1022个水分子;因此通常所测得的体系的各种物理化学性质都是大量粒子的平均行为。实际上,热力学规律成立的前提条件就是由大量粒子组成的体系。第二节、纳米材料的特性

当研究对象变成纳米尺度的物质,纳米尺度的微观世界,变成一个原子或一个分子时,是否还会遵循传统理论和规律呢?

第二节、纳米材料的特性

水可能是我们最熟悉的东西,我们每天都离不开水,我们知道油水是不相溶的,无论宏观尺度上的水和微观尺度上的水都是和油不相溶的,你没有办法把它混在一起。但是如果到了纳米尺度上,也就是说在这个微观世界里,它就能够溶,并且溶得非常好,成为热力学的稳定相。不管它温度变化也好,振动也好,里头加一点化学原料也好,它都能够是稳定的。第二节、纳米材料的特性

从通常的关于微观和宏观的观点看,纳米级这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。纳米材料的特性1.表面效应

2.小尺寸效应

3.量子尺寸效应

4.宏观量子隧道效应1.表面效应

表面效应是指纳米超微粒子的表面原子数与总原子数之比随着纳米粒子尺寸的减小而大幅度地增加,粒子的表面能及表面张力也随着增加,从而引起纳米粒子性能的变化。纳米粒子的表面原子所处的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,并具有不饱和性,因而极易与其他原子相结合而趋于稳定,所以,具有很高的化学活性.

利用这一特性可制得具有高催化活性和产物选择性的催化剂。粒子的大小与表面原子数的关系直径/nm1510100原子总数N30400030000300000表面原子百分比9940202纳米颗粒的表面效应—活性

超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如果将金属铜或铝做成几个纳米的颗粒,一遇到空气就会产生激烈的燃烧,发生爆炸。如要防止自燃,可采用表面包覆或控制氧化速度,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用真空或惰性气体保护,表面改性等防止纳米粉体团聚。2.小尺寸效应

随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。

(1)特殊的光学性质

(2)特殊的热学性质

(3)特殊的磁学性质

(4)特殊的力学性质

小尺寸效应

特殊的光学性质—颜色

特殊的光学性质:当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态时都呈现为黑色。尺寸越小,颜色越黑,银白色的铂变成铂黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于1%,大约几微米的厚度就能完全消光。

利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。也有可能应用于红外敏感原件、红外隐身技术等。小尺寸效应

超微纳米颗粒的不稳定性

超微颗粒的表面与大块物体的表面是十分不同的。若用高倍率电子显微镜对金超微颗粒(直径2nm)进行观察,发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体、二十面体等),它既不同于一般固体,有不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了沸腾状态,尺寸大于10nm后才看不到这种颗粒结构的不稳定性。小尺寸效应

纳米微粒的熔点降低

纳米微粒的熔点比常规粉体低得多。由于颗粒小,纳米微粒的表面能高,表面原子数多,这些原子近邻配位不全,纳米微粒间是一种非共价相互作用,活性大,纳米粒子熔化时所增加的内能小得多,这就使得纳米微粒的熔点急剧下降。金的熔点通常是1000多摄氏度,而晶粒尺度为3纳米的金微粒,其熔点仅为普通金的一半3.量子尺寸效应

微粒尺寸下降到一定值时,费米能级附近的电子能级由准连续能级变为分立能级,吸收光谱向短波方向移动,这种现象称为量子尺寸效应。

对于宏观物体包含无限个原子,N→∞,于是δ→0,即宏观物体的能级间距几乎为零;而纳米微粒包含的原子数有限,N值很小,能级间距将发生分裂,这就导致纳米微粒磁、光、声、热、电以及超导电性与宏观特性不同,从而产生量子尺寸效应。例如,温度为1K时,直径小于14nm的银纳米颗粒会变成绝缘体。4.宏观量子隧道效应

隧道效应是基本的量子现象之一,即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量如微颗粒的磁化强度、量子相干器件中的磁通量及电荷也具有隧道效应,他们可以穿越宏观系统的势阱而产生变化,故称之为宏观量子隧道效应。

在量子力学中,隧道效应是粒子波动性的直接结果。当一个粒子进入到一个势垒中,而势垒的势能比粒子的动能大时,根据量子力学原理,粒子越过壁垒而出现在势垒的另一边的几率不为零,而经典力学给出的几率则为零。经典理论和量子理论的差别第三节纳米材料的制备技术

在纳米尺寸的世界中自由地剪裁、安排材料,这一技术被称为纳米加工技术。纳米材料的制备科学在当前的纳米技术研究中占据着极为关键的地位。人们一般将纳米材料的制备方法划分为物理方法和化学方法两大类。纳米材料的制备技术因此,在纳米世界内,所有的加工都必须在原子尺寸的层面上考虑。

一、物理方法1真空冷凝法

用真空蒸发、加热、高频感应等方法使原料气化或形成等粒子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。2物理粉碎法

通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。3机械球磨法

采用球磨方法,控制适当的条件得到纯元素、合金或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。二、化学方法1.化学沉淀法

共沉淀法;均匀沉淀法

多元醇沉淀法;

沉淀转化法2.化学还原法水溶液还原法;多元醇还原法气相还原法;碳热还原法

利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来。此时,加人的沉淀剂不是立刻与被沉淀组分发生反应,而是通过化学反应使沉淀剂在整个溶液中缓慢地生成。其优点之一是构晶离子的过饱和度在整个溶液中比较均匀,所以沉淀物的颗粒均匀而致密,便于过滤洗涤。同时,它可以避免杂质的共沉淀,这样得到的粒子粒径分布均匀。

在直接沉淀法中由于沉淀剂来不及扩散,造成局部浓度过高,使溶液中同时进行着均相成核与非均相戚核作用,造成产品粒子粒度分布过宽。显然,均匀沉淀法优于直接沉淀法以硝酸锌为原料.尿素为均匀沉淀剂。纳米氧化锌制备其反应方程式如下:①尿素水解反应CO(NH2)2+3H2O=CO2++2NH3·HO;③沉淀反应Zn2++2NH3·H2O—Zn(OH)2(s)+2NH4+③热处理反应Zn(OH)2一ZnO+H2O(g)3.溶胶-凝胶法

溶胶-凝胶法广泛应用于金属氧化物纳米粒子的制备。前驱物用金属醇盐(M-O-R或M-(O-R)n)或非醇盐均可。方法实质是前驱物在一定条件下水解(醇解)成溶胶,再制成凝胶,经干燥纳米材料热处理后制得所需纳米粒子。

4.水热法

水热法是在高压釜里的高温、高压反应环境中,采用水作为反应介质,使得通常难溶或不溶的物质溶解,反应还可进行重结晶。水热技术具有两个特点,一是其相对低的温度,二是在封闭容器中进行,避免了组分挥发。

水热条件下粉体的制备有水热结晶法、水热合成法、水热分解法、水热脱水法、水热氧化法、水热还原法等。与一般湿化学法相比较,水热法可直接得到分散且结晶良好的粉体,不需作高温灼烧处理,避免了可能形成的粉体硬团聚。5.溶剂热合成法

用有机溶剂代替水作介质,采用类似水热合成的原理制备纳米微粉。非水溶剂代替水,不仅扩大了水热技术的应用范围,而且能够实现通常条件下无法实现的反应,包括制备具有亚稳态结构的材料。苯由于其稳定的共轭结构,是溶剂热合成的优良溶剂,最近成功地发展成苯热合成技术,溶剂加压热合成技术可以在相对低的温度和压力下制备出通常在极端条件下才能制得的、在超高压下才能存在的亚稳相。6.微乳液法

微乳液通常是由表面活性剂、助表面活性剂(通常为醇类)、油类(通常为碳氢化合物)组成的透明的、各向同性的热力学稳定体系。微乳液中,微小的“水池”为表面活性剂和助表面活性剂所构成的单分子层包围成的微乳颗粒,其大小在几至几十个纳米间,这些微小的“水池”彼此分离,就是“微反应器”。它拥有很大的界面,有利于化学反应。这显然是制备纳米材料的又一有效技术。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论