![徐州一中学云龙实验学校2022-2023学年九年级数学第一学期期末考试试题含解析_第1页](http://file4.renrendoc.com/view/444e7c57da9d39d02667f81892e0eabf/444e7c57da9d39d02667f81892e0eabf1.gif)
![徐州一中学云龙实验学校2022-2023学年九年级数学第一学期期末考试试题含解析_第2页](http://file4.renrendoc.com/view/444e7c57da9d39d02667f81892e0eabf/444e7c57da9d39d02667f81892e0eabf2.gif)
![徐州一中学云龙实验学校2022-2023学年九年级数学第一学期期末考试试题含解析_第3页](http://file4.renrendoc.com/view/444e7c57da9d39d02667f81892e0eabf/444e7c57da9d39d02667f81892e0eabf3.gif)
![徐州一中学云龙实验学校2022-2023学年九年级数学第一学期期末考试试题含解析_第4页](http://file4.renrendoc.com/view/444e7c57da9d39d02667f81892e0eabf/444e7c57da9d39d02667f81892e0eabf4.gif)
![徐州一中学云龙实验学校2022-2023学年九年级数学第一学期期末考试试题含解析_第5页](http://file4.renrendoc.com/view/444e7c57da9d39d02667f81892e0eabf/444e7c57da9d39d02667f81892e0eabf5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.设a,b是方程的两个实数根,则的值为A.2014 B.2015 C.2016 D.20172.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A. B. C. D.3.在1、2、3三个数中任取两个,组成一个两位数,则组成的两位数是奇数的概率为()A. B. C. D.4.方程的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-15.方程的根是()A.5和 B.2和 C.8和 D.3和6.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个 B.3个 C.2个 D.1个7.如图,⊙O的圆周角∠A=40°,则∠OBC的度数为()A.80° B.50° C.40° D.30°8.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(
)A.9分 B.8分 C.7分 D.6分9.如图,已知∥∥,,那么的值是()A. B. C. D.210.两相似三角形的相似比为,它们的面积之差为15,则面积之和是()A.39 B.75 C.76 D.4011.已知点是线段的一个黄金分割点,则的值为()A. B. C. D.12.如图,CD是⊙O的直径,已知∠1=30°,则∠2等于()A.30° B.45° C.60° D.70°二、填空题(每题4分,共24分)13.某物体对地面的压强P(Pa)与物体和地面的接触面积S(m2)成反比例函数关系(如图),当该物体与地面的接触面积为0.25m2时,该物体对地面的压强是______Pa.14.如图,点C是以AB为直径的半圆上一个动点(不与点A、B重合),且AC+BC=8,若AB=m(m为整数),则整数m的值为______.15.若点P(3,1)与点Q关于原点对称,则点Q的坐标是___________.16.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=▲.17.已知二次函数y=(x-2)2+3,当x_______________时,y18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,点,过点作轴的垂线,垂足为.作轴的垂线,垂足为点从出发,沿轴正方向以每秒个单位长度运动;点从出发,沿轴正方向以每秒个单位长度运动;点从出发,沿方向以每秒个单位长度运动.当点运动到点时,三点随之停止运动.设运动时间为.(1)用含的代数式分别表示点,点的坐标.(2)若与以点,,为顶点的三角形相似,求的值.20.(8分)将一副直角三角板按右图叠放.(1)证明:△AOB∽△COD;(2)求△AOB与△DOC的面积之比.21.(8分)快乐的寒假临近啦!小明和小丽计划在寒假期间去镇江旅游.他们选取金山(记为)、焦山(记为)、北固山(记为)这三个景点为游玩目标.如果他们各自在三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),请用“画树状图”或“列表”的方法求他俩都选择金山为第一站的概率.22.(10分)有一个人患了流感,经过两轮传染后共有196个人患了流感,每轮传染中平均一个人传染了几个人?23.(10分)如图,AB和DE直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影子长BC=3m.(1)在图中画出此时DE在太阳光下的影子EF;(2)在测量AB影子长时,同时测量出EF=6m,计算DE的长.24.(10分)(1)计算(2)解不等式组:25.(12分)如图将小球从斜坡的O点抛出,小球的抛出路线可以用二次函数y=ax2+bx刻画,顶点坐标为(4,8),斜坡可以用y=x刻画.(1)求二次函数解析式;(2)若小球的落点是A,求点A的坐标;(3)求小球飞行过程中离坡面的最大高度.26.甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)
参考答案一、选择题(每题4分,共48分)1、C【详解】解:∵a,b是方程x2+x﹣2017=0的两个实数根,∴a+b=﹣1,a2+a﹣2017=0,∴a2=﹣a+2017,∴a2+2a+b=﹣a+2017+2a+b=2017+a+b=2017﹣1=1.故选C.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则,.也考查了一元二次方程的解.2、D【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】过点A向BC作AH⊥BC于点H,所以根据相似比可知:,即EF=2(6-x)所以y=×2(6-x)x=-x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选D.【点睛】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.3、C【分析】列举出所有情况,看末位是1和3的情况占所有情况的多少即可.【详解】依题意画树状图:∴共有6种情况,是奇数的有4种情况,所以组成的两位数是偶数的概率=,故选:C.【点睛】本题考查了树状图法求概率以及概率公式;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.4、C【分析】根据因式分解法,可得答案.【详解】解:,方程整理,得,x2-x=0
因式分解得,x(x-1)=0,
于是,得,x=0或x-1=0,
解得x1=0,x2=1,
故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.5、C【分析】利用直接开平方法解方程即可得答案.【详解】(x-3)2=25,∴x-3=±5,∴x=8或x=-2,故选:C.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.6、B【解析】试题解析:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有
,即b=,∴tan∠CAD=.故④不正确;故选B.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.7、B【分析】然后根据圆周角定理即可得到∠OBC的度数,由OB=OC,得到∠OBC=∠OCB,根据三角形内角和定理计算出∠OBC.【详解】∵∠A=40°.
∴∠BOC=80°,
∵OB=OC,
∴∠OBC=∠OCB=50°,
故选:B.【点睛】本题考查了圆周角定理:一条弧所对的圆周角是它所对的圆心角的一半;也考查了等腰三角形的性质以及三角形的内角和定理.8、C【解析】分析:根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为C.点睛:本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9、A【分析】根据平行线分线段成比例定理得到AC:CE=BD:DF=1:2,然后利用比例性质即可得出答案进行选择.【详解】解:∵AB∥CD∥EF,∴AC:CE=BD:DF,∵,∴AC:CE=BD:DF=1:2,即CE=2AC,∴AC:AE=1:3=.故选A.【点睛】本题考查平行线分线段成比例即三条平行线截两条直线,所得的对应线段成比例.10、A【分析】由两相似三角形的相似比为,得它们的面积比为4:9,设它们的面积分别为4x,9x,列方程,即可求解.【详解】∵两相似三角形的相似比为,∴它们的面积比为4:9,设它们的面积分别为4x,9x,则9x-4x=15,∴x=3,∴9x+4x=13x=13×3=39.故选A.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的面积比等于相似比的平方,是解题的关键.11、A【解析】试题分析:根据题意得AP=AB,所以PB=AB-AP=AB,所以PB:AB=.故选B.考点:黄金分割点评:本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点;其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.12、C【解析】试题分析:如图,连接AD.∵CD是⊙O的直径,∴∠CAD=90°(直径所对的圆周角是90°);在Rt△ABC中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所对的圆周角相等),∴∠2=60°考点:圆周角定理二、填空题(每题4分,共24分)13、1【分析】直接利用函数图象得出函数解析式,进而求出答案.【详解】设P=,把(0.5,2000)代入得:k=1000,故P=,当S=0.25时,P==1(Pa).故答案为:1.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析会死是解题关键.14、6或1【分析】因为直径所对圆周角为直角,所以ABC的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,列出关于BC的函数关系式,再根据二次函数的性质和三角形的三边关系得出的范围,再根据题意要求AB为整数,即可得出AB可能的长度.【详解】解:∵直径所对圆周角为直角,故ABC为直角三角形,∴根据勾股定理可得,,即,又∵AC+BC=8,∴AC=8-BC∴∵∴当BC=4时,的最小值=32,∴AB的最小值为∵∴∵AB=m∴∵m为整数∴m=6或1,故答案为:6或1.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、二次函数的性质,解题的关键在于找出AB长度的范围.15、(–3,–1)【分析】根据关于原点对称的点的规律:纵横坐标均互为相反数解答即可.【详解】根据关于原点对称的点的坐标的特点,可得:点P(3,1)关于原点过对称的点Q的坐标是(–3,–1).故答案为:(–3,–1).【点睛】本题主要考查了关于原点对称的点的坐标特点,解题时根据两个点关于原点对称时,它们的同名坐标互为相反数可直接得到答案,本题属于基础题,难度不大,注意平面直角坐标系中任意一点P(x,y),关于原点的对称点是(–x,–y),即关于原点的对称点,横纵坐标都变成相反数.16、5.5【解析】试题分析:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m考点:相似三角形17、<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大.根据性质可得:当x<2时,y随x的增大而减小.考点:二次函数的性质18、1【解析】抛物线的解析式为y=x2-6x-16,可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=1.【详解】抛物线的解析式为y=x2-6x-16,
则D(0,-16)
令y=0,解得:x=-2或8,
函数的对称轴x=-=3,即M(3,0),
则A(-2,0)、B(8,0),则AB=10,
圆的半径为AB=5,
在Rt△COM中,
OM=5,OM=3,则:CO=4,
则:CD=CO+OD=4+16=1.故答案是:1.【点睛】考查的是抛物线与x轴的交点,涉及到圆的垂径定理.三、解答题(共78分)19、(1)点的坐标为,点的坐标为;(2)的值为【分析】(1)根据题意OE=3t,OD=t,BF=2t,据四边形OABC是矩形,可得AB=OC=10,BC=OA=12,从而可求得OE、AF,即得E、F的坐标;(2)只需分两种情况(①△ODE∽△AEF②△ODE∽△AFE)来讨论,然后运用相似三角形的性质就可解决.【详解】解:(1)∵BA⊥轴,BC⊥轴,∠AOC=90°,∴∠AOC=∠BAO=∠BCO=90°,∴四边形OABC是矩形,又∵B(12,10),∴AB=CO=10,BC=OA=12根据题意可知OE=3t,OD=t,BF=2t.∴AF=10-2t,AE=12-2t∴点E的坐标为(3t,0),点F的坐标为(12,10-2t)(2)①当△ODE∽△AEF时,则有,∴,解得(舍),;②当△ODE∽△AFE时,则有,∴,解得(舍),;∵点运动到点时,三点随之停止运动,∴,∴,∵,∴舍去,综上所述:的值为故答案为:t=【点睛】本题考查了平面直角坐标系中的动点问题,运用相似三角形的性质来解决问题.易错之处是这两种情况都要考虑到.20、(1)见解析;(2)1:1【分析】(1)推出∠OCD=∠A,∠D=∠ABO,就可得△AOB∽△COD;(2)设BC=a,则AB=a,BD=2a,由勾股定理知:CD=a,得AB:CD=1:,根据相似三角形性质可得面积比.【详解】解:(1)∵∠ABC=90°,∠DCB=90°∴AB∥CD,∴∠OCD=∠A,∠D=∠ABO,∴△AOB∽△COD(2)设BC=a,则AB=a,BD=2a由勾股定理知:CD=a∴AB:CD=1:∴△AOB与△DOC的面积之比等于1:1.【点睛】考核知识点:相似三角形的判定和性质.理解相似三角形的判定和性质是关键.21、“画树状图”或“列表”见解析;(都选金山为第一站).【分析】画树形图得出所有等可能的情况数,找出小明和小丽都选金山为第一站的情况数,即可求出所求的概率.【详解】画树状图得:
∵共有9种等可能的结果,小明和小丽都选金山为第一站的只有1种情况,
∴(都选金山为第一站).【点睛】本题考查的是用列表法或树状图法求概率.树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22、每轮传染中平均一个人传染了13个人.【分析】设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有196人患了流感,列方程求解.【详解】设每轮传染中平均一个人传染了个人,则,即:则,解得:(不合题意,舍去)答:每轮传染中平均一个人传染了13个人.【点睛】此题考查了一元二次方程的应用,读懂题意,准确找到等量关系列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.23、(1)详见解析;(2)10m【分析】(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影;(2)易证△ABC∽△DEF,再根据相似三角形的对应边成比例进行解答即可.【详解】(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE,∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴AB:DE=BC:EF,∵AB=5m,BC=3m,EF=6m,∴5:DE=3:6,∴DE=10m.【点睛】本题主要考查相似三角形的应用,解此题的关键在于熟练掌握相似三角形的判
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度法律服务团队聘用合同范本下载
- 2025年度音乐喷泉与音响系统集成项目合同
- 知识产权教育实践活动计划
- 科技创新应用推广工作方案计划
- 学期后勤保障与支持计划
- 2025年物位仪合作协议书
- 培养小学生的公民道德责任计划
- 制定年度客户满意度提升计划
- 如何构建长效的职业发展体系计划
- 校园美术文化建设方案计划
- 8款-组织架构图(可编辑)
- 30道医院妇产科医生岗位高频面试问题附考察点及参考回答
- 21中华文化-2023年中考英语新热点时文阅读
- 卷内目录范例模板
- 学校课程整体框架图
- 环境卫生学第二章 环境与健康的关系
- 2024届高考语文复习:小说阅读之叙事顺序与叙事节奏
- 新生儿肺透明膜病的影像与临床探讨
- 动力触探检测报告超重型圆锥动力触探试验
- 职业素养的内容(含事例)课件
- 工艺美术专业-工艺品设计课程标准
评论
0/150
提交评论