版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/1
弹性力学第3章
4MaterialBehavior—LinearElasticSolidsTheprevioustwochaptersestablishelasticity?eldequationsrelatedtothekinematicsof
smalldeformationtheoryandtheequilibriumoftheassociatedinternalstress?eld.Based
onthesephysicalconcepts,threestrain-displacementrelations(2.2.5),sixcompatibility
equations(2.6.2),andthreeequilibriumequations(3.6.5)weredevelopedforthegeneral
three-dimensionalcase.Becausemomentequilibriumsimplyresultsinsymmetryofthestress
tensor,itisnotnormallyincludedasaseparate?eldequationset.Also,recallthatthe
compatibilityequationsactuallyrepresentonlythreeindependentrelations,andtheseequa-
tionsareneededonlytoensurethatagivenstrain?eldwillproducesingle-valuedcontinuous
displacements.Becausethedisplacementsareincludedinthegeneralproblemformulation,the
solutionautomaticallygivescontinuousdisplacements,andthecompatibilityequationsarenot
formallyneededforthegeneralsystem.Thus,excludingthecompatibilityrelations,itisfound
thatwehavenowdevelopednine?eldequations.Theunknownsintheseequationsinclude3
displacementcomponents,6componentsofstrain,and6stresscomponents,yieldingatotalof
15unknowns.Thus,the9equationsarenotsuf?cienttosolveforthe15unknowns,and
additional?eldequationsareneeded.Thisresultshouldnotbesurprisingsinceuptothispoint
inourdevelopmentwehavenotconsideredthematerialresponse.Wenowwishtocomplete
ourgeneralformulationbyspecializingtoaparticularmaterialmodelthatprovidesreasonable
characterizationofmaterialsundersmalldeformations.Themodelwewilluseisthatofa
linearelasticmaterial,anamethatcategorizestheentiretheory.Thischapterpresentsthe
basicsoftheelasticmodelspecializingtheformulationforisotropicmaterials.Relatedtheory
foranisotropicmediaisdevelopedinChapter11.Thermoelasticrelationsarealsobrie?y
presentedforlateruseinChapter12.
4.1MaterialCharacterization
Relationsthatcharacterizethephysicalpropertiesofmaterialsarecalledconstitutiveequa-
tions.Becauseoftheendlessvarietyofmaterialsandloadings,thestudyanddevelopmentof
constitutiveequationsisperhapsoneofthemostinterestingandchallenging?eldsinmechan-
ics.Althoughcontinuummechanicstheoryhasestablishedsomeprinciplesforsystematic
developmentofconstitutiveequations(Malvern1969),manyconstitutivelawshavebeen
developedthroughempiricalrelationsbasedonexperimentalevidence.Ourinteresthereis
69
limitedtoaspecialclassofsolidmaterialswithloadingsresultingfrommechanicalorthermal
effects.Themechanicalbehaviorofsolidsisnormallyde?nedbyconstitutivestress-strain
http://./doc/4b8f853243323968011c9279.htmlmonly,theserelationsexpressthestressasafunctionofthestrain,strainrate,
strainhistory,temperature,andmaterialproperties.Wechoosearathersimplematerialmodel
calledtheelasticsolidthatdoesnotincluderateorhistoryeffects.Themodelmaybe
describedasadeformablecontinuumthatrecoversitsoriginalcon?gurationwhentheloadings
causingthedeformationareremoved.Furthermore,werestricttheconstitutivestress-strain
lawtobelinear,thusleadingtoalinearelasticsolid.Althoughtheseassumptionsgreatly
simplifythemodel,linearelasticitypredictionshaveshowngoodagreementwithexperimental
dataandhaveprovidedusefulmethodstoconductstressanalysis.Manystructuralmaterials
includingmetals,plastics,ceramics,wood,rock,concrete,andsoforthexhibitlinearelastic
behaviorundersmalldeformations.
Asmentioned,experimentaltestingiscommonlyemployedinordertocharacterizethemechanicalbehaviorofrealmaterials.Onesuchtechniqueisthesimpletensiontestinwhicha
speciallypreparedcylindricalor?atstocksampleisloadedaxiallyinatestingmachine.Strain
isdeterminedbythechangeinlengthbetweenprescribedreferencemarksonthesampleandis
usuallymeasuredbyaclipgage.Loaddatacollectedfromaloadcellisdividedbythecross-
sectionalareainthetestsectiontocalculatethestress.Axialstress-straindataisrecordedand
plottedusingstandardexperimentaltechniques.Typicalqualitativedataforthreetypesof
structuralmetals(mildsteel,aluminum,castiron)areshowninFigure4-1.Itisobservedthat
eachmaterialexhibitsaninitialstress-strainresponseforsmalldeformationthatisapproxi-
matelylinear.Thisisfollowedbyachangetononlinearbehaviorthatcanleadtolarge
deformation,?nallyendingwithsamplefailure.
Foreachmaterialtheinitiallinearresponseendsatapointnormallyreferredtoastheproportionallimit.Anotherobservationinthisinitialregionisthatiftheloadingisremoved,
thesamplereturnstoitsoriginalshapeandthestraindisappears.Thischaracteristicisthe
primarydescriptorofelasticbehavior.However,atsomepointonthestress-straincurve
unloadingdoesnotbringthesamplebacktozerostrainandsomepermanentplasticdeform-
ationresults.Thepointatwhichthisnonelasticbehaviorbeginsiscalledtheelasticlimit.
Althoughsomematerialsexhibitdifferentelasticandproportionallimits,manytimes
thesevaluesaretakentobeapproximatelythesame.Anotherdemarcationonthestress-strain
curveisreferredtoastheyieldpoint,de?nedbythelocationwherelargeplasticdeformation
begins.
s
70FOUNDATIONSANDELEMENTARYAPPLICATIONS
Becausemildsteelandaluminumareductilematerials,theirstress-strainresponseindicatesextensiveplasticdeformation,andduringthisperiodthesampledimensionswillbechanging.Inparticularthesample’scross-sectionalareaundergoessigni?cantreduction,andthestresscalculationusingdivisionbytheoriginalareawillnowbeinerror.Thisaccountsforthereductioninthestressatlargestrain.Ifweweretocalculatetheloaddividedbythetruearea,thetruestresswouldcontinuetoincreaseuntilfailure.Ontheotherhand,castironisknowntobeabrittlematerial,andthusitsstress-strainresponsedoesnotshowlargeplasticdeformation.Forthismaterial,verylittlenonelasticornonlinearbehaviorisobserved.Itisthereforeconcludedfromthisandmanyotherstudiesthatalargevarietyofrealmaterialsexhibitslinearelasticbehaviorundersmalldeformations.Thiswouldleadtoalinearconstitutivemodelfortheone-dimensionalaxialloadingcasegivenbytherelations?Ee,whereEistheslopeoftheuniaxialstress-straincurve.Wenowusethissimpleconcepttodevelopthegeneralthree-dimensionalformsofthelinearelasticconstitutivemodel.
4.2LinearElasticMaterials—Hooke’sLaw
Basedonobservationsfromtheprevioussection,inordertoconstructageneralthree-dimensionalconstitutivelawforlinearelasticmaterials,weassumethateachstresscomponentislinearlyrelatedtoeachstraincomponent
sx?C11extC12eytC13ezt2C14exyt2C15eyzt2C16ezx
sy?C21extC22eytC23ezt2C24exyt2C25eyzt2C26ezx
sz?C31extC32eytC33ezt2C34exyt2C35eyzt2C36ezx
txy?C41extC42eytC43ezt2C44exyt2C45eyzt2C46ezx
tyz?C51extC52eytC53ezt2C54exyt2C55eyzt2C56ezx
tzx?C61extC62eytC63ezt2C64exyt2C65eyzt2C66ezx(4:2:1)
wherethecoef?cientsCijarematerialparametersandthefactorsof2arisebecauseofthesymmetryofthestrain.Notethatthisrelationcouldalsobeexpressedbywritingthestrainsasalinearfunctionofthestresscomponents.Theserelationscanbecastintoamatrixformatas
sxsysztxytyztzx2666666437777775?C11C12áááC16C21áááááááááááááááááá
áááááC61ááááC662666666437777775exeyez2exy2eyz2ezx2666666437777775(4:2:2)
Relations(4.2.1)canalsobeexpressedinstandardtensornotationbywriting
sij?Cijklekl(4:2:3)
whereCijklisafourth-orderelasticitytensorwhosecomponentsincludeallthematerialparametersnecessarytocharacterizethematerial.Basedonthesymmetryofthestressandstraintensors,theelasticitytensormusthavethefollowingproperties(seeExercise4-1):
MaterialBehavior—LinearElasticSolids71
Cijkl?Cjikl
(4:2:4)
Cijkl?Cijlk
Ingeneral,thefourth-ordertensorCijklhas81components.However,relations(4.2.4)
reducethenumberofindependentcomponentsto36,andthisprovidestherequiredmatch
withform(4.2.1)or(4.2.2).LaterinChapter6weintroducetheconceptofstrainenergy,and
thisleadstoafurtherreductionto21independentelasticcomponents.ThecomponentsofCijkl
orequivalentlyCijarecalledelasticmoduliandhaveunitsofstress(force/area).Inorderto
continuefurther,wemustaddresstheissuesofmaterialhomogeneityandisotropy.
Ifthematerialishomogenous,theelasticbehaviordoesnotvaryspatially,andthusallelasticmoduliareconstant.Forthiscase,theelasticityformulationisstraightforward,leadingtothe
developmentofmanyanalyticalsolutionstoproblemsofengineeringinterest.Ahomogenous
assumptionisanappropriatemodelformoststructuralapplications,andthusweprimarily
choosethisparticularcaseforsubsequentformulationandproblemsolution.However,thereare
acoupleofimportantnonhomogeneousapplicationsthatwarrantfurtherdiscussion.
Studiesingeomechanicshavefoundthatthematerialbehaviorofsoilandrockcommonlydependsondistancebelowtheearth’ssurface.Inordertosimulateparticulargeomechanics
problems,researchershaveusednonhomogeneouselasticmodelsappliedtosemi-in?nite
domains.Typicalapplicationshaveinvolvedmodelingtheresponseofasemi-in?nitesoil
massundersurfaceorsubsurfaceloadingswithvariationinelasticmoduliwithdepth(seethe
reviewbyPoulosandDavis1974).Anothermorerecentapplicationinvolvesthebehaviorof
functionallygradedmaterials(FGM)(seeErdogan1995andParameswaranandShukla1999,
2002).FGMsareanewclassofengineeredmaterialsdevelopedwithspatiallyvarying
propertiestosuitparticularapplications.Thegradedcompositionofsuchmaterialsiscom-
monlyestablishedandcontrolledusingpowdermetallurgy,chemicalvapordeposition,or
centrifugalcasting.Typicalanalyticalstudiesofthesematerialshaveassumedlinear,exponen-
tial,andpower-lawvariationinelasticmodulioftheform
Cij(x)?Coij(1tax)
Cij(x)?Coijeax
(4:2:5)
Cij(x)?Coijxa
whereCoijandaareprescribedconstantsandxisthespatialcoordinate.Furtherinvestigationof
formulationresultsforsuchspatiallyvaryingmoduliareincludedinExercises5-6and7-12in
subsequentchapters.
Similartohomogeneity,anotherfundamentalmaterialpropertyisisotropy.Thispropertyhastodowithdifferencesinmaterialmoduliwithrespecttoorientation.Forexample,many
materialsincludingcrystallineminerals,wood,and?ber-reinforcedcompositeshavedifferent
elasticmoduliindifferentdirections.Materialssuchasthesearesaidtobeanisotropic.Note
thatformostrealanisotropicmaterialsthereexistparticulardirectionswherethepropertiesare
thesame.Thesedirectionsindicatematerialsymmetries.However,formanyengineering
materials(moststructuralmetalsandmanyplastics),theorientationofcrystallineandgrain
microstructureisdistributedrandomlysothatmacroscopicelasticpropertiesarefoundtobe
essentiallythesameinalldirections.Suchmaterialswithcompletesymmetryarecalled
isotropic.Asexpected,ananisotropicmodelcomplicatestheformulationandsolutionof
problems.WethereforepostponedevelopmentofsuchsolutionsuntilChapter11andcontinue
ourcurrentdevelopmentundertheassumptionofisotropicmaterialbehavior.
72FOUNDATIONSANDELEMENTARYAPPLICATIONS
Thetensorialform(4.2.3)providesaconvenientwaytoestablishthedesiredisotropicstress-strainrelations.Ifweassumeisotropicbehavior,theelasticitytensormustbethesameunderallrotationsofthecoordinatehttp://./doc/4b8f853243323968011c9279.htmlingthebasictransformationpropertiesfromrelation(1:5:1)5,thefourth-orderelasticitytensormustsatisfy
Cijkl?QimQjnQkpQlqCmnpq
Itcanbeshown(ChandrasekharaiahandDebnath1994)thatthemostgeneralformthatsatis?esthisisotropyconditionisgivenby
Cijkl?adijdkltbdikdjltgdildjk(4:2:6)
wherea,b,andgarearbitraryconstants.Veri?cationoftheisotropypropertyofform(4.2.6)isleftashttp://./doc/4b8f853243323968011c9279.htmlingthegeneralform(4.2.6)instress-strainrelation(4.2.3)gives
sij?lekkdijt2meij(4:2:7)
wherewehaverelabeledparticularconstantsusinglandm.TheelasticconstantliscalledLame′’sconstant,andmisreferredtoastheshearmodulusormodulusofrigidity.SometextsusethenotationGfortheshearmodulus.Equation(4.2.7)canbewrittenoutinindividualscalarequationsas
sx?l(exteytez)t2mex
sy?l(exteytez)t2mey
sz?l(exteytez)t2mez
txy?2mexy
tyz?2meyz
tzx?2mezx
(4:2:8)
Relations(4.2.7)or(4.2.8)arecalledthegeneralizedHooke’slawforlinearisotropicelasticsolids.TheyarenamedafterRobertHookewhoin1678?rstproposedthatthedeformationofanelasticstructureisproportionaltotheappliedforce.Noticethesigni?cantsimplicityoftheisotropicformwhencomparedtothegeneralstress-strainlaworiginallygivenby(4.2.1).Itshouldbenotedthatonlytwoindependentelasticconstantsareneededtodescribethebehaviorofisotropicmaterials.AsshowninChapter11,additionalnumbersofelasticmoduliareneededinthecorrespondingrelationsforanisotropicmaterials.
Stress-strainrelations(4.2.7)or(4.2.8)maybeinvertedtoexpressthestrainintermsofthestress.Inordertodothisitisconvenienttousetheindexnotationform(4.2.7)andsetthetwofreeindicesthesame(contractionprocess)toget
skk?(3lt2m)ekk(4:2:9)Thisrelationcanbesolvedforekkandsubstitutedbackinto(4.2.7)toget
eij?
1
2m
sijà
l
3lt2m
skkdij
MaterialBehavior—LinearElasticSolids73
whichismorecommonlywrittenas
eij?1tn
E
sijà
n
E
skkdij(4:2:10)
whereE?m(3lt2m)=(ltm)andiscalledthemodulusofelasticityorYoung’smodulus,andn?l=[2(ltm)]isreferredtoasPoisson’sratio.Theindexnotationrelation(4.2.10)maybewrittenoutincomponent(scalar)formgivingthesixequations
ex?1
E
sxàn(sytsz)??
ey?1
E
syàn(sztsx)??
ez?1
E
szàn(sxtsy)??
exy?1tn
E
txy?
1
2m
txy
eyz?1tn
tyz?
1
tyz
ezx?1tn
E
tzx?
1
2m
tzx
(4:2:11)
Constitutiveform(4.2.10)or(4.2.11)againillustratesthatonlytwoelasticconstantsare
neededtoformulateHooke’slawforisotropicmaterials.Byusinganyoftheisotropicforms
ofHooke’slaw,itcanbeshownthattheprincipalaxesofstresscoincidewiththeprincipal
axesofstrain(seeExercise4-4).Thisresultalsoholdsforsomebutnotallanisotropic
materials.
4.3PhysicalMeaningofElasticModuli
Fortheisotropiccase,thepreviouslyde?nedelasticmodulihavesimplephysicalmeaning.
Thesecanbedeterminedthroughinvestigationofparticularstatesofstresscommonlyusedin
laboratorymaterialstestingasshowninFigure4-2.
4.3.1SimpleTension
Considerthesimpletensiontestasdiscussedpreviouslywithasamplesubjectedtotension
inthexdirection(seeFigure4-2).Thestateofstressiscloselyrepresentedbytheone-
dimensional?eld
sij?
s000000002
4
3
5
Usingthisinrelations(4.2.10)givesacorrespondingstrain?eld74FOUNDATIONSANDELEMENTARYAPPLICATIONS
eij?s
E000ànEs000ànE
s2666437775Therefore,E?s=exandissimplytheslopeofthestress-straincurve,whilen?àey=ex?àez=existheratioofthetransversestraintotheaxialstrain.Standardmeasure-mentsystemscaneasilycollectaxialstressandtransverseandaxialstraindata,andthusthroughthisonetypeoftestbothelasticconstantscanbedeterminedformaterialsofinterest.
4.3.2PureShear
Ifathin-walledcylinderissubjectedtotorsionalloading(asshowninFigure4-2),thestateofstressonthesurfaceofthecylindricalsampleisgivenby
sij?0t0t0
0000
2435Again,byusingHooke’slaw,thecorrespondingstrain?eldbecomes
eij?0t=2m0
t=2m
00000
2
435andthustheshearmodulusisgivenbym?t=2exy?t=gxy,andthismodulusissimplytheslopeoftheshearstress-shearstrain
curve.(SimpleTension)(PureShear)(HydrostaticCompression)
FIGURE4-2Specialcharacterizationstatesofstress.
MaterialBehavior—LinearElasticSolids75
4.3.3HydrostaticCompression(orTension)
The?nalexampleisassociatedwiththeuniformcompression(ortension)loadingofacubicalspecimen,asshowninFigure4-2.Thistypeoftestwouldberealizableifthesamplewasplacedinahigh-pressurecompressionchamber.Thestateofstressforthiscaseisgivenby
sij?
àp00
0àp0
00àp
2
4
3
5?àpdij
ThisisanisotropicstateofstressandthestrainsfollowfromHooke’slaw
eij?
à
1à2n
E
p00
0à
1à2n
E
p0
00à
1à2n
E
p2
66
66
4
3
77
77
5
Thedilatationthatrepresentsthechangeinmaterialvolume(seeExercise2-11)isthusgiven
byW?ekk?à3(1à2n)p=E,whichcanbewrittenas
p?àkW(4:3:1)wherek?E=[3(1à2n)]iscalledthebulkmodulusofelasticity.Thisadditionalelastic
constantrepresentstheratioofpressuretothedilatation,whichcouldbereferredtoasthe
volumetricstiffnessofthematerial.NoticethatasPoisson’sratioapproaches0.5,thebulk
modulusbecomesunboundedandthematerialdoesnotundergoanyvolumetricdeformation
andhenceisincompressible.
Ourdiscussionofelasticmoduliforisotropicmaterialshasledtothede?nitionof?veconstantsl,m,E,n,andk.However,keepinmindthatonlytwooftheseareneededto
characterizethematerial.Althoughwehavedevelopedafewrelationshipsbetweenvarious
moduli,manyothersuchrelationscanalsobefound.Infact,itcanbeshownthatall?veelastic
constantsareinterrelated,andifanytwoaregiven,theremainingthreecanbedeterminedby
usingsimpleformulae.ResultsoftheserelationsareconvenientlysummarizedinTable4-1.
Thistableshouldbemarkedforfuturereference,becauseitwillprovetobeusefulfor
calculationsthroughoutthetext.
TypicalnominalvaluesofelasticconstantsforparticularengineeringmaterialsaregiveninTable4-2.Thesemodulirepresentaveragevalues,andsomevariationwilloccurforspeci?c
materials.Furtherinformationandrestrictionsonelasticmodulirequirestrainenergycon-
cepts,whicharedevelopedinChapter6.
Beforeconcludingthissection,wewishtodiscusstheformsofHooke’slawincurvilinearcoordinates.Previouschaptershavementionedthatcylindricalandsphericalcoordinates(see
Figures1-4and1-5)areusedinmanyapplicationsforproblemsolution.Figures3-9and3-10
de?nedthestresscomponentsineachcurvilinearsystem.Inregardstothese?gures,itfollows
thattheorthogonalcurvilinearcoordinatedirectionscanbeobtainedfromabaseCartesian
systemthroughasimplerotationofthecoordinateframe.Forisotropicmaterials,theelasticity
tensorCijklisthesameinallcoordinateframes,andthusthestructureofHooke’slawremains
thesameinanyorthogonalcurvilinearsystem.Therefore,form(4.2.8)canbeexpressedin
cylindricalandsphericalcoordinatesas
76FOUNDATIONSANDELEMENTARYAPPLICATIONS
sr?l(erteytez)t2mer
sR?l(eRteftey)t2meRsy?l(erteytez)t2mey
sf?l(eRteftey)t2mefsz?l(erteytez)t2mez
sy?l(eRteftey)t2meytry?2mery
tRf?2meRftyz?2meyz
tfy?2mefytzr?2mezrtyR?2meyR(4:3:2)
Thecompletesetofelasticity?eldequationsineachofthesecoordinatesystemsisgiveninAppendixA.
4.4ThermoelasticConstitutiveRelations
Itiswellknownthatatemperaturechangeinanunrestrainedelasticsolidproducesdeform-ation.Thus,ageneralstrain?eldresultsfrombothmechanicalandthermaleffects.Withinthecontextoflinearsmalldeformationtheory,thetotalstraincanbedecomposedintothesumofmechanicalandthermalcomponentsas
TABLE4-1RelationsAmongElasticConstants
En
kmlE,nEn
EEEnE,kE3kàE
6kk3kE9kàE3k(3kàE)9kàEE,mEEà2m
mEmm(Eà2m)E,lE2l
EtltR
Et3ltR6Eà3ltR4ln,k3k(1à2n)nk3k(1à2n)2(1tn)3kn1tnn,m2m(1tn)n
2m(1tn)m2mnn,ll(1tn)(1à2n)nn
l(1tn)3nl(1à2n)2nlk,m9km3kà2m
kmkà2mk,l9k(kàl)3kàll
3kàlk32(kàl)lm,l
m(3lt2m)ltml
2(ltm)3lt2m3mlR?????????????????????????????????E2t9l2t2ElpMaterialBehavior—LinearElasticSolids77
eij?e(M)ijte(T)ij(4:4:1)
IfToistakenasthereferencetemperatureandTasanarbitrarytemperature,thethermalstrainsinanunrestrainedsolidcanbewritteninthelinearconstitutiveform
e(T)ij?aij(TàTo)(4:4:2)
whereaijisthecoef?cientofthermalexpansiontensor.Noticethatitisthetemperaturedifferencethatcreatesthermalstrain.Ifthematerialistakenasisotropic,thenaijmustbeanisotropicsecond-ordertensor,and(4.4.2)simpli?esto
e(T)ij?a(TàTo)dij(4:4:3)
whereaisamaterialconstantcalledthecoef?cientofthermalexpansion.Table4-2providestypicalvaluesofthisconstantforsomecommonmaterials.Noticethatforisotropicmaterials,noshearstrainsarecreatedbytemperaturechange.Byusing(4.4.1),thisresultcanbecombinedwiththemechanicalrelation(4.2.10)togive
eij?1tnsijànskkdijta(TàTo)dij(4:4:4)
Thecorrespondingresultsforthestressintermsofstraincanbewrittenas
sij?Cijkleklàbij(TàTo)(4:4:5)
wherebijisasecond-ordertensorcontainingthermoelasticmoduli.ThisresultissometimesreferredtoastheDuhamel-Neumannthermoelasticconstitutivelaw.Theisotropiccasecanbefoundbysimplyinvertingrelation(4.4.4)toget
sij?lekkdijt2meijà(3lt2m)a(TàTo)dij(4:4:6)
ThermoelasticsolutionsaredevelopedinChapter12,andthecurrentstudywillnowcontinueundertheassumptionofisothermalconditions.
Havingdevelopedthenecessarysixconstitutiverelations,theelasticity?eldequationsystemisnowcompletewith15equations(strain-displacement,equilibrium,Hooke’slaw)for15unknowns(displacements,strains,stresses).Obviously,furthersimpli?cationisneces-
TABLE4-2TypicalValuesofElasticModuliforCommonEngineeringMaterials
E(GPa)n
m(GPa)l(GPa)k(GPa)a(10à6=8C)Aluminum68.90.34
25.754.671.825.5Concrete27.60.20
11.57.715.311Copper89.60.34
33.47193.318Glass68.90.25
27.627.645.98.8Nylon28.30.40
10.14.0447.2102Rubber0.00190.499
0:654?10à30.3260.326200Steel207
0.2980.211116413.578FOUNDATIONSANDELEMENTARYAPPLICATIONS
saryinordertosolvespeci?cproblemsofengineeringinterest,andtheseprocessesarethe
subjectofthenextchapter.
References
ChandrasekharaiahDS,andDebnathL:ContinuumMechanics,AcademicPress,Boston,1994.
ErdoganF:Fracturemechanicsoffunctionallygradedmaterials,CompositesEngng,vol5,pp.753-770,
1995.
MalvernLE:IntroductiontotheMechanicsofaContinuousMedium,PrenticeHall,EnglewoodCliffs,
NJ,1969.
ParameswaranV,andShuklaA:Crack-tipstress?eldsfordynamicfractureinfunctionallygradient
materials,Mech.ofMaterials,vol31,pp.579-596,1999.
ParameswaranV,andShuklaA:Asymptoticstress?eldsforstationarycracksalongthegradientin
functionallygradedmaterials,J.Appl.Mech.,vol69,pp.240-243,2002.
PoulosHG,andDavisEH:ElasticSolutionsforSoilandRockMechanics,JohnWiley,NewYork,1974.Exercises
4-1.Explicitlyjustifythesymmetryrelations(4.2.4).Notethatthe?rstrelationfollowsdirectlyfromthesymmetryofthestress,whilethesecondconditionrequiresasimple
(CijkltCijlk)elktoarriveattherequiredconclusion.
expansionintotheformsij?1
2
4-2.Substitutingthegeneralisotropicfourth-orderform(4.2.6)into(4.2.3),explicitlydevelopthestress-strainrelation(4.2.7).
4-3.Followingthestepsoutlinedinthetext,inverttheformofHooke’slawgivenby(4.2.7)anddevelopform(4.2.10).ExplicitlyshowthatE?m(3lt2m)=(ltm)andn?l=[2(ltm)].
http://./doc/4b8f853243323968011c9279.htmlingtheresultsofExercise4-3,showthatm?E=[2(1tn)]andl?En=[(1tn)(1à2n)].
4-5.Forisotropicmaterialsshowthattheprincipalaxesofstraincoincidewiththeprincipalaxeso
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年大连市房屋租赁协议登记须知版
- 2024年度企业信息化建设与技术服务合同
- 2024工业控制技术服务协议书
- 2024年度个体户版权许可使用合同
- 2024年企业业务合作合同标准模板版B版
- 2024年全球道路运输服务协议一
- 2024年专业健身房会员服务合同样本版B版
- 2024年度住宅租赁协议样本一
- 2024安全承包合同范本范本
- 2024人力资源管理保密协议
- 医疗器械产品推广策划书
- 信息安全测试员(高级)职业技能鉴定备考试题库-上(单选题)
- 2024年中国光固化树脂市场调查研究报告
- 缤纷舞曲-《青年友谊圆舞曲》教学课件-2024-2025学年人音版(简谱)(2024)七年级音乐上册
- 城市经济学课件:城市群的发展与案例分析
- 2024-2025学年人教版七年级英语上学期 Unit 7 Happy Birthday 【速记清单】
- 《山东省会计师事务所服务收费管理办法》
- 屋面采光天窗施工方案
- 2024年苹果水果购销合同范本
- 走进美丽乡村(教案)-2024-2025学年一年级上册数学北师大版
- 安全安全技术交底模板
评论
0/150
提交评论