弹性力学第3章_第1页
弹性力学第3章_第2页
弹性力学第3章_第3页
弹性力学第3章_第4页
弹性力学第3章_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1/1

弹性力学第3章

4MaterialBehavior—LinearElasticSolidsTheprevioustwochaptersestablishelasticity?eldequationsrelatedtothekinematicsof

smalldeformationtheoryandtheequilibriumoftheassociatedinternalstress?eld.Based

onthesephysicalconcepts,threestrain-displacementrelations(2.2.5),sixcompatibility

equations(2.6.2),andthreeequilibriumequations(3.6.5)weredevelopedforthegeneral

three-dimensionalcase.Becausemomentequilibriumsimplyresultsinsymmetryofthestress

tensor,itisnotnormallyincludedasaseparate?eldequationset.Also,recallthatthe

compatibilityequationsactuallyrepresentonlythreeindependentrelations,andtheseequa-

tionsareneededonlytoensurethatagivenstrain?eldwillproducesingle-valuedcontinuous

displacements.Becausethedisplacementsareincludedinthegeneralproblemformulation,the

solutionautomaticallygivescontinuousdisplacements,andthecompatibilityequationsarenot

formallyneededforthegeneralsystem.Thus,excludingthecompatibilityrelations,itisfound

thatwehavenowdevelopednine?eldequations.Theunknownsintheseequationsinclude3

displacementcomponents,6componentsofstrain,and6stresscomponents,yieldingatotalof

15unknowns.Thus,the9equationsarenotsuf?cienttosolveforthe15unknowns,and

additional?eldequationsareneeded.Thisresultshouldnotbesurprisingsinceuptothispoint

inourdevelopmentwehavenotconsideredthematerialresponse.Wenowwishtocomplete

ourgeneralformulationbyspecializingtoaparticularmaterialmodelthatprovidesreasonable

characterizationofmaterialsundersmalldeformations.Themodelwewilluseisthatofa

linearelasticmaterial,anamethatcategorizestheentiretheory.Thischapterpresentsthe

basicsoftheelasticmodelspecializingtheformulationforisotropicmaterials.Relatedtheory

foranisotropicmediaisdevelopedinChapter11.Thermoelasticrelationsarealsobrie?y

presentedforlateruseinChapter12.

4.1MaterialCharacterization

Relationsthatcharacterizethephysicalpropertiesofmaterialsarecalledconstitutiveequa-

tions.Becauseoftheendlessvarietyofmaterialsandloadings,thestudyanddevelopmentof

constitutiveequationsisperhapsoneofthemostinterestingandchallenging?eldsinmechan-

ics.Althoughcontinuummechanicstheoryhasestablishedsomeprinciplesforsystematic

developmentofconstitutiveequations(Malvern1969),manyconstitutivelawshavebeen

developedthroughempiricalrelationsbasedonexperimentalevidence.Ourinteresthereis

69

limitedtoaspecialclassofsolidmaterialswithloadingsresultingfrommechanicalorthermal

effects.Themechanicalbehaviorofsolidsisnormallyde?nedbyconstitutivestress-strain

http://./doc/4b8f853243323968011c9279.htmlmonly,theserelationsexpressthestressasafunctionofthestrain,strainrate,

strainhistory,temperature,andmaterialproperties.Wechoosearathersimplematerialmodel

calledtheelasticsolidthatdoesnotincluderateorhistoryeffects.Themodelmaybe

describedasadeformablecontinuumthatrecoversitsoriginalcon?gurationwhentheloadings

causingthedeformationareremoved.Furthermore,werestricttheconstitutivestress-strain

lawtobelinear,thusleadingtoalinearelasticsolid.Althoughtheseassumptionsgreatly

simplifythemodel,linearelasticitypredictionshaveshowngoodagreementwithexperimental

dataandhaveprovidedusefulmethodstoconductstressanalysis.Manystructuralmaterials

includingmetals,plastics,ceramics,wood,rock,concrete,andsoforthexhibitlinearelastic

behaviorundersmalldeformations.

Asmentioned,experimentaltestingiscommonlyemployedinordertocharacterizethemechanicalbehaviorofrealmaterials.Onesuchtechniqueisthesimpletensiontestinwhicha

speciallypreparedcylindricalor?atstocksampleisloadedaxiallyinatestingmachine.Strain

isdeterminedbythechangeinlengthbetweenprescribedreferencemarksonthesampleandis

usuallymeasuredbyaclipgage.Loaddatacollectedfromaloadcellisdividedbythecross-

sectionalareainthetestsectiontocalculatethestress.Axialstress-straindataisrecordedand

plottedusingstandardexperimentaltechniques.Typicalqualitativedataforthreetypesof

structuralmetals(mildsteel,aluminum,castiron)areshowninFigure4-1.Itisobservedthat

eachmaterialexhibitsaninitialstress-strainresponseforsmalldeformationthatisapproxi-

matelylinear.Thisisfollowedbyachangetononlinearbehaviorthatcanleadtolarge

deformation,?nallyendingwithsamplefailure.

Foreachmaterialtheinitiallinearresponseendsatapointnormallyreferredtoastheproportionallimit.Anotherobservationinthisinitialregionisthatiftheloadingisremoved,

thesamplereturnstoitsoriginalshapeandthestraindisappears.Thischaracteristicisthe

primarydescriptorofelasticbehavior.However,atsomepointonthestress-straincurve

unloadingdoesnotbringthesamplebacktozerostrainandsomepermanentplasticdeform-

ationresults.Thepointatwhichthisnonelasticbehaviorbeginsiscalledtheelasticlimit.

Althoughsomematerialsexhibitdifferentelasticandproportionallimits,manytimes

thesevaluesaretakentobeapproximatelythesame.Anotherdemarcationonthestress-strain

curveisreferredtoastheyieldpoint,de?nedbythelocationwherelargeplasticdeformation

begins.

s

70FOUNDATIONSANDELEMENTARYAPPLICATIONS

Becausemildsteelandaluminumareductilematerials,theirstress-strainresponseindicatesextensiveplasticdeformation,andduringthisperiodthesampledimensionswillbechanging.Inparticularthesample’scross-sectionalareaundergoessigni?cantreduction,andthestresscalculationusingdivisionbytheoriginalareawillnowbeinerror.Thisaccountsforthereductioninthestressatlargestrain.Ifweweretocalculatetheloaddividedbythetruearea,thetruestresswouldcontinuetoincreaseuntilfailure.Ontheotherhand,castironisknowntobeabrittlematerial,andthusitsstress-strainresponsedoesnotshowlargeplasticdeformation.Forthismaterial,verylittlenonelasticornonlinearbehaviorisobserved.Itisthereforeconcludedfromthisandmanyotherstudiesthatalargevarietyofrealmaterialsexhibitslinearelasticbehaviorundersmalldeformations.Thiswouldleadtoalinearconstitutivemodelfortheone-dimensionalaxialloadingcasegivenbytherelations?Ee,whereEistheslopeoftheuniaxialstress-straincurve.Wenowusethissimpleconcepttodevelopthegeneralthree-dimensionalformsofthelinearelasticconstitutivemodel.

4.2LinearElasticMaterials—Hooke’sLaw

Basedonobservationsfromtheprevioussection,inordertoconstructageneralthree-dimensionalconstitutivelawforlinearelasticmaterials,weassumethateachstresscomponentislinearlyrelatedtoeachstraincomponent

sx?C11extC12eytC13ezt2C14exyt2C15eyzt2C16ezx

sy?C21extC22eytC23ezt2C24exyt2C25eyzt2C26ezx

sz?C31extC32eytC33ezt2C34exyt2C35eyzt2C36ezx

txy?C41extC42eytC43ezt2C44exyt2C45eyzt2C46ezx

tyz?C51extC52eytC53ezt2C54exyt2C55eyzt2C56ezx

tzx?C61extC62eytC63ezt2C64exyt2C65eyzt2C66ezx(4:2:1)

wherethecoef?cientsCijarematerialparametersandthefactorsof2arisebecauseofthesymmetryofthestrain.Notethatthisrelationcouldalsobeexpressedbywritingthestrainsasalinearfunctionofthestresscomponents.Theserelationscanbecastintoamatrixformatas

sxsysztxytyztzx2666666437777775?C11C12áááC16C21áááááááááááááááááá

áááááC61ááááC662666666437777775exeyez2exy2eyz2ezx2666666437777775(4:2:2)

Relations(4.2.1)canalsobeexpressedinstandardtensornotationbywriting

sij?Cijklekl(4:2:3)

whereCijklisafourth-orderelasticitytensorwhosecomponentsincludeallthematerialparametersnecessarytocharacterizethematerial.Basedonthesymmetryofthestressandstraintensors,theelasticitytensormusthavethefollowingproperties(seeExercise4-1):

MaterialBehavior—LinearElasticSolids71

Cijkl?Cjikl

(4:2:4)

Cijkl?Cijlk

Ingeneral,thefourth-ordertensorCijklhas81components.However,relations(4.2.4)

reducethenumberofindependentcomponentsto36,andthisprovidestherequiredmatch

withform(4.2.1)or(4.2.2).LaterinChapter6weintroducetheconceptofstrainenergy,and

thisleadstoafurtherreductionto21independentelasticcomponents.ThecomponentsofCijkl

orequivalentlyCijarecalledelasticmoduliandhaveunitsofstress(force/area).Inorderto

continuefurther,wemustaddresstheissuesofmaterialhomogeneityandisotropy.

Ifthematerialishomogenous,theelasticbehaviordoesnotvaryspatially,andthusallelasticmoduliareconstant.Forthiscase,theelasticityformulationisstraightforward,leadingtothe

developmentofmanyanalyticalsolutionstoproblemsofengineeringinterest.Ahomogenous

assumptionisanappropriatemodelformoststructuralapplications,andthusweprimarily

choosethisparticularcaseforsubsequentformulationandproblemsolution.However,thereare

acoupleofimportantnonhomogeneousapplicationsthatwarrantfurtherdiscussion.

Studiesingeomechanicshavefoundthatthematerialbehaviorofsoilandrockcommonlydependsondistancebelowtheearth’ssurface.Inordertosimulateparticulargeomechanics

problems,researchershaveusednonhomogeneouselasticmodelsappliedtosemi-in?nite

domains.Typicalapplicationshaveinvolvedmodelingtheresponseofasemi-in?nitesoil

massundersurfaceorsubsurfaceloadingswithvariationinelasticmoduliwithdepth(seethe

reviewbyPoulosandDavis1974).Anothermorerecentapplicationinvolvesthebehaviorof

functionallygradedmaterials(FGM)(seeErdogan1995andParameswaranandShukla1999,

2002).FGMsareanewclassofengineeredmaterialsdevelopedwithspatiallyvarying

propertiestosuitparticularapplications.Thegradedcompositionofsuchmaterialsiscom-

monlyestablishedandcontrolledusingpowdermetallurgy,chemicalvapordeposition,or

centrifugalcasting.Typicalanalyticalstudiesofthesematerialshaveassumedlinear,exponen-

tial,andpower-lawvariationinelasticmodulioftheform

Cij(x)?Coij(1tax)

Cij(x)?Coijeax

(4:2:5)

Cij(x)?Coijxa

whereCoijandaareprescribedconstantsandxisthespatialcoordinate.Furtherinvestigationof

formulationresultsforsuchspatiallyvaryingmoduliareincludedinExercises5-6and7-12in

subsequentchapters.

Similartohomogeneity,anotherfundamentalmaterialpropertyisisotropy.Thispropertyhastodowithdifferencesinmaterialmoduliwithrespecttoorientation.Forexample,many

materialsincludingcrystallineminerals,wood,and?ber-reinforcedcompositeshavedifferent

elasticmoduliindifferentdirections.Materialssuchasthesearesaidtobeanisotropic.Note

thatformostrealanisotropicmaterialsthereexistparticulardirectionswherethepropertiesare

thesame.Thesedirectionsindicatematerialsymmetries.However,formanyengineering

materials(moststructuralmetalsandmanyplastics),theorientationofcrystallineandgrain

microstructureisdistributedrandomlysothatmacroscopicelasticpropertiesarefoundtobe

essentiallythesameinalldirections.Suchmaterialswithcompletesymmetryarecalled

isotropic.Asexpected,ananisotropicmodelcomplicatestheformulationandsolutionof

problems.WethereforepostponedevelopmentofsuchsolutionsuntilChapter11andcontinue

ourcurrentdevelopmentundertheassumptionofisotropicmaterialbehavior.

72FOUNDATIONSANDELEMENTARYAPPLICATIONS

Thetensorialform(4.2.3)providesaconvenientwaytoestablishthedesiredisotropicstress-strainrelations.Ifweassumeisotropicbehavior,theelasticitytensormustbethesameunderallrotationsofthecoordinatehttp://./doc/4b8f853243323968011c9279.htmlingthebasictransformationpropertiesfromrelation(1:5:1)5,thefourth-orderelasticitytensormustsatisfy

Cijkl?QimQjnQkpQlqCmnpq

Itcanbeshown(ChandrasekharaiahandDebnath1994)thatthemostgeneralformthatsatis?esthisisotropyconditionisgivenby

Cijkl?adijdkltbdikdjltgdildjk(4:2:6)

wherea,b,andgarearbitraryconstants.Veri?cationoftheisotropypropertyofform(4.2.6)isleftashttp://./doc/4b8f853243323968011c9279.htmlingthegeneralform(4.2.6)instress-strainrelation(4.2.3)gives

sij?lekkdijt2meij(4:2:7)

wherewehaverelabeledparticularconstantsusinglandm.TheelasticconstantliscalledLame′’sconstant,andmisreferredtoastheshearmodulusormodulusofrigidity.SometextsusethenotationGfortheshearmodulus.Equation(4.2.7)canbewrittenoutinindividualscalarequationsas

sx?l(exteytez)t2mex

sy?l(exteytez)t2mey

sz?l(exteytez)t2mez

txy?2mexy

tyz?2meyz

tzx?2mezx

(4:2:8)

Relations(4.2.7)or(4.2.8)arecalledthegeneralizedHooke’slawforlinearisotropicelasticsolids.TheyarenamedafterRobertHookewhoin1678?rstproposedthatthedeformationofanelasticstructureisproportionaltotheappliedforce.Noticethesigni?cantsimplicityoftheisotropicformwhencomparedtothegeneralstress-strainlaworiginallygivenby(4.2.1).Itshouldbenotedthatonlytwoindependentelasticconstantsareneededtodescribethebehaviorofisotropicmaterials.AsshowninChapter11,additionalnumbersofelasticmoduliareneededinthecorrespondingrelationsforanisotropicmaterials.

Stress-strainrelations(4.2.7)or(4.2.8)maybeinvertedtoexpressthestrainintermsofthestress.Inordertodothisitisconvenienttousetheindexnotationform(4.2.7)andsetthetwofreeindicesthesame(contractionprocess)toget

skk?(3lt2m)ekk(4:2:9)Thisrelationcanbesolvedforekkandsubstitutedbackinto(4.2.7)toget

eij?

1

2m

sijà

l

3lt2m

skkdij

MaterialBehavior—LinearElasticSolids73

whichismorecommonlywrittenas

eij?1tn

E

sijà

n

E

skkdij(4:2:10)

whereE?m(3lt2m)=(ltm)andiscalledthemodulusofelasticityorYoung’smodulus,andn?l=[2(ltm)]isreferredtoasPoisson’sratio.Theindexnotationrelation(4.2.10)maybewrittenoutincomponent(scalar)formgivingthesixequations

ex?1

E

sxàn(sytsz)??

ey?1

E

syàn(sztsx)??

ez?1

E

szàn(sxtsy)??

exy?1tn

E

txy?

1

2m

txy

eyz?1tn

tyz?

1

tyz

ezx?1tn

E

tzx?

1

2m

tzx

(4:2:11)

Constitutiveform(4.2.10)or(4.2.11)againillustratesthatonlytwoelasticconstantsare

neededtoformulateHooke’slawforisotropicmaterials.Byusinganyoftheisotropicforms

ofHooke’slaw,itcanbeshownthattheprincipalaxesofstresscoincidewiththeprincipal

axesofstrain(seeExercise4-4).Thisresultalsoholdsforsomebutnotallanisotropic

materials.

4.3PhysicalMeaningofElasticModuli

Fortheisotropiccase,thepreviouslyde?nedelasticmodulihavesimplephysicalmeaning.

Thesecanbedeterminedthroughinvestigationofparticularstatesofstresscommonlyusedin

laboratorymaterialstestingasshowninFigure4-2.

4.3.1SimpleTension

Considerthesimpletensiontestasdiscussedpreviouslywithasamplesubjectedtotension

inthexdirection(seeFigure4-2).Thestateofstressiscloselyrepresentedbytheone-

dimensional?eld

sij?

s000000002

4

3

5

Usingthisinrelations(4.2.10)givesacorrespondingstrain?eld74FOUNDATIONSANDELEMENTARYAPPLICATIONS

eij?s

E000ànEs000ànE

s2666437775Therefore,E?s=exandissimplytheslopeofthestress-straincurve,whilen?àey=ex?àez=existheratioofthetransversestraintotheaxialstrain.Standardmeasure-mentsystemscaneasilycollectaxialstressandtransverseandaxialstraindata,andthusthroughthisonetypeoftestbothelasticconstantscanbedeterminedformaterialsofinterest.

4.3.2PureShear

Ifathin-walledcylinderissubjectedtotorsionalloading(asshowninFigure4-2),thestateofstressonthesurfaceofthecylindricalsampleisgivenby

sij?0t0t0

0000

2435Again,byusingHooke’slaw,thecorrespondingstrain?eldbecomes

eij?0t=2m0

t=2m

00000

2

435andthustheshearmodulusisgivenbym?t=2exy?t=gxy,andthismodulusissimplytheslopeoftheshearstress-shearstrain

curve.(SimpleTension)(PureShear)(HydrostaticCompression)

FIGURE4-2Specialcharacterizationstatesofstress.

MaterialBehavior—LinearElasticSolids75

4.3.3HydrostaticCompression(orTension)

The?nalexampleisassociatedwiththeuniformcompression(ortension)loadingofacubicalspecimen,asshowninFigure4-2.Thistypeoftestwouldberealizableifthesamplewasplacedinahigh-pressurecompressionchamber.Thestateofstressforthiscaseisgivenby

sij?

àp00

0àp0

00àp

2

4

3

5?àpdij

ThisisanisotropicstateofstressandthestrainsfollowfromHooke’slaw

eij?

à

1à2n

E

p00

1à2n

E

p0

00à

1à2n

E

p2

66

66

4

3

77

77

5

Thedilatationthatrepresentsthechangeinmaterialvolume(seeExercise2-11)isthusgiven

byW?ekk?à3(1à2n)p=E,whichcanbewrittenas

p?àkW(4:3:1)wherek?E=[3(1à2n)]iscalledthebulkmodulusofelasticity.Thisadditionalelastic

constantrepresentstheratioofpressuretothedilatation,whichcouldbereferredtoasthe

volumetricstiffnessofthematerial.NoticethatasPoisson’sratioapproaches0.5,thebulk

modulusbecomesunboundedandthematerialdoesnotundergoanyvolumetricdeformation

andhenceisincompressible.

Ourdiscussionofelasticmoduliforisotropicmaterialshasledtothede?nitionof?veconstantsl,m,E,n,andk.However,keepinmindthatonlytwooftheseareneededto

characterizethematerial.Althoughwehavedevelopedafewrelationshipsbetweenvarious

moduli,manyothersuchrelationscanalsobefound.Infact,itcanbeshownthatall?veelastic

constantsareinterrelated,andifanytwoaregiven,theremainingthreecanbedeterminedby

usingsimpleformulae.ResultsoftheserelationsareconvenientlysummarizedinTable4-1.

Thistableshouldbemarkedforfuturereference,becauseitwillprovetobeusefulfor

calculationsthroughoutthetext.

TypicalnominalvaluesofelasticconstantsforparticularengineeringmaterialsaregiveninTable4-2.Thesemodulirepresentaveragevalues,andsomevariationwilloccurforspeci?c

materials.Furtherinformationandrestrictionsonelasticmodulirequirestrainenergycon-

cepts,whicharedevelopedinChapter6.

Beforeconcludingthissection,wewishtodiscusstheformsofHooke’slawincurvilinearcoordinates.Previouschaptershavementionedthatcylindricalandsphericalcoordinates(see

Figures1-4and1-5)areusedinmanyapplicationsforproblemsolution.Figures3-9and3-10

de?nedthestresscomponentsineachcurvilinearsystem.Inregardstothese?gures,itfollows

thattheorthogonalcurvilinearcoordinatedirectionscanbeobtainedfromabaseCartesian

systemthroughasimplerotationofthecoordinateframe.Forisotropicmaterials,theelasticity

tensorCijklisthesameinallcoordinateframes,andthusthestructureofHooke’slawremains

thesameinanyorthogonalcurvilinearsystem.Therefore,form(4.2.8)canbeexpressedin

cylindricalandsphericalcoordinatesas

76FOUNDATIONSANDELEMENTARYAPPLICATIONS

sr?l(erteytez)t2mer

sR?l(eRteftey)t2meRsy?l(erteytez)t2mey

sf?l(eRteftey)t2mefsz?l(erteytez)t2mez

sy?l(eRteftey)t2meytry?2mery

tRf?2meRftyz?2meyz

tfy?2mefytzr?2mezrtyR?2meyR(4:3:2)

Thecompletesetofelasticity?eldequationsineachofthesecoordinatesystemsisgiveninAppendixA.

4.4ThermoelasticConstitutiveRelations

Itiswellknownthatatemperaturechangeinanunrestrainedelasticsolidproducesdeform-ation.Thus,ageneralstrain?eldresultsfrombothmechanicalandthermaleffects.Withinthecontextoflinearsmalldeformationtheory,thetotalstraincanbedecomposedintothesumofmechanicalandthermalcomponentsas

TABLE4-1RelationsAmongElasticConstants

En

kmlE,nEn

EEEnE,kE3kàE

6kk3kE9kàE3k(3kàE)9kàEE,mEEà2m

mEmm(Eà2m)E,lE2l

EtltR

Et3ltR6Eà3ltR4ln,k3k(1à2n)nk3k(1à2n)2(1tn)3kn1tnn,m2m(1tn)n

2m(1tn)m2mnn,ll(1tn)(1à2n)nn

l(1tn)3nl(1à2n)2nlk,m9km3kà2m

kmkà2mk,l9k(kàl)3kàll

3kàlk32(kàl)lm,l

m(3lt2m)ltml

2(ltm)3lt2m3mlR?????????????????????????????????E2t9l2t2ElpMaterialBehavior—LinearElasticSolids77

eij?e(M)ijte(T)ij(4:4:1)

IfToistakenasthereferencetemperatureandTasanarbitrarytemperature,thethermalstrainsinanunrestrainedsolidcanbewritteninthelinearconstitutiveform

e(T)ij?aij(TàTo)(4:4:2)

whereaijisthecoef?cientofthermalexpansiontensor.Noticethatitisthetemperaturedifferencethatcreatesthermalstrain.Ifthematerialistakenasisotropic,thenaijmustbeanisotropicsecond-ordertensor,and(4.4.2)simpli?esto

e(T)ij?a(TàTo)dij(4:4:3)

whereaisamaterialconstantcalledthecoef?cientofthermalexpansion.Table4-2providestypicalvaluesofthisconstantforsomecommonmaterials.Noticethatforisotropicmaterials,noshearstrainsarecreatedbytemperaturechange.Byusing(4.4.1),thisresultcanbecombinedwiththemechanicalrelation(4.2.10)togive

eij?1tnsijànskkdijta(TàTo)dij(4:4:4)

Thecorrespondingresultsforthestressintermsofstraincanbewrittenas

sij?Cijkleklàbij(TàTo)(4:4:5)

wherebijisasecond-ordertensorcontainingthermoelasticmoduli.ThisresultissometimesreferredtoastheDuhamel-Neumannthermoelasticconstitutivelaw.Theisotropiccasecanbefoundbysimplyinvertingrelation(4.4.4)toget

sij?lekkdijt2meijà(3lt2m)a(TàTo)dij(4:4:6)

ThermoelasticsolutionsaredevelopedinChapter12,andthecurrentstudywillnowcontinueundertheassumptionofisothermalconditions.

Havingdevelopedthenecessarysixconstitutiverelations,theelasticity?eldequationsystemisnowcompletewith15equations(strain-displacement,equilibrium,Hooke’slaw)for15unknowns(displacements,strains,stresses).Obviously,furthersimpli?cationisneces-

TABLE4-2TypicalValuesofElasticModuliforCommonEngineeringMaterials

E(GPa)n

m(GPa)l(GPa)k(GPa)a(10à6=8C)Aluminum68.90.34

25.754.671.825.5Concrete27.60.20

11.57.715.311Copper89.60.34

33.47193.318Glass68.90.25

27.627.645.98.8Nylon28.30.40

10.14.0447.2102Rubber0.00190.499

0:654?10à30.3260.326200Steel207

0.2980.211116413.578FOUNDATIONSANDELEMENTARYAPPLICATIONS

saryinordertosolvespeci?cproblemsofengineeringinterest,andtheseprocessesarethe

subjectofthenextchapter.

References

ChandrasekharaiahDS,andDebnathL:ContinuumMechanics,AcademicPress,Boston,1994.

ErdoganF:Fracturemechanicsoffunctionallygradedmaterials,CompositesEngng,vol5,pp.753-770,

1995.

MalvernLE:IntroductiontotheMechanicsofaContinuousMedium,PrenticeHall,EnglewoodCliffs,

NJ,1969.

ParameswaranV,andShuklaA:Crack-tipstress?eldsfordynamicfractureinfunctionallygradient

materials,Mech.ofMaterials,vol31,pp.579-596,1999.

ParameswaranV,andShuklaA:Asymptoticstress?eldsforstationarycracksalongthegradientin

functionallygradedmaterials,J.Appl.Mech.,vol69,pp.240-243,2002.

PoulosHG,andDavisEH:ElasticSolutionsforSoilandRockMechanics,JohnWiley,NewYork,1974.Exercises

4-1.Explicitlyjustifythesymmetryrelations(4.2.4).Notethatthe?rstrelationfollowsdirectlyfromthesymmetryofthestress,whilethesecondconditionrequiresasimple

(CijkltCijlk)elktoarriveattherequiredconclusion.

expansionintotheformsij?1

2

4-2.Substitutingthegeneralisotropicfourth-orderform(4.2.6)into(4.2.3),explicitlydevelopthestress-strainrelation(4.2.7).

4-3.Followingthestepsoutlinedinthetext,inverttheformofHooke’slawgivenby(4.2.7)anddevelopform(4.2.10).ExplicitlyshowthatE?m(3lt2m)=(ltm)andn?l=[2(ltm)].

http://./doc/4b8f853243323968011c9279.htmlingtheresultsofExercise4-3,showthatm?E=[2(1tn)]andl?En=[(1tn)(1à2n)].

4-5.Forisotropicmaterialsshowthattheprincipalaxesofstraincoincidewiththeprincipalaxeso

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论