




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.一个几何体的三视图如图所示,该几何体是A.直三棱柱 B.长方体 C.圆锥 D.立方体2.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A. B. C. D.3.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A. B. C. D.4.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A.172 B.171 C.170 D.1685.下列图形中既是中心对称图形又是轴对称图形的是A. B. C. D.6.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称 B.关于y轴对称C.绕原点逆时针旋转 D.绕原点顺时针旋转7.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.8.下列说法正确的是()A.某工厂质检员检测某批灯泡的使用寿命采用普查法B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C.12名同学中有两人的出生月份相同是必然事件D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是9.估计的值在()A.4和5之间 B.5和6之间C.6和7之间 D.7和8之间10.若|a|=﹣a,则a为()A.a是负数 B.a是正数 C.a=0 D.负数或零二、填空题(共7小题,每小题3分,满分21分)11.如图,点A、B、C在圆O上,弦AC与半径OB互相平分,那么∠AOC度数为_____度.12.如图,在平面直角坐标系中,已知C(1,),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为_____.13.分解因式:3x2-6x+3=__.14.分解因式:4a2﹣1=_____.15.已知关于x的方程1-xx-216.已知关于x的一元二次方程(k﹣5)x2﹣2x+2=0有实根,则k的取值范围为_____.17.如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是__________cm.三、解答题(共7小题,满分69分)18.(10分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,是边上的中线,若,求证:.如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.19.(5分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?20.(8分)如图所示,内接于圆O,于D;(1)如图1,当AB为直径,求证:;(2)如图2,当AB为非直径的弦,连接OB,则(1)的结论是否成立?若成立请证明,不成立说明由;(3)如图3,在(2)的条件下,作于E,交CD于点F,连接ED,且,若,,求CF的长度.21.(10分)已知关于的方程mx2+(2m-1)x+m-1=0(m≠0).求证:方程总有两个不相等的实数根;若方程的两个实数根都是整数,求整数的值.22.(10分)先化简,再求值:,其中x是从-1、0、1、2中选取一个合适的数.23.(12分)如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B(2,n)两点.(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;(3)设二次函数y=﹣x2+c的图象与y轴相交于点C,连接AC,BC,求△ABC的面积.24.(14分)在平面直角坐标系xOy中,函数(x>0)的图象与直线l1:y=x+b交于点A(3,a-2).(1)求a,b的值;(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.2、A【解析】
根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.【详解】由题意可得,,故选A.【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.3、D【解析】
根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.4、C【解析】
先把所给数据从小到大排列,然后根据中位数的定义求解即可.【详解】从小到大排列:150,164,168,168,,172,176,183,185,∴中位数为:(168+172)÷2=170.故选C.【点睛】本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.5、B【解析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选B.6、C【解析】分析:根据旋转的定义得到即可.详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C.点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.7、D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.8、B【解析】
分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.【详解】A.某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B.根据平均数是4求得a的值为2,则方差为[(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;C.12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.9、C【解析】
根据,可以估算出位于哪两个整数之间,从而可以解答本题.【详解】解:∵即
故选:C.【点睛】本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.10、D【解析】
根据绝对值的性质解答.【详解】解:当a≤0时,|a|=-a,∴|a|=-a时,a为负数或零,故选D.【点睛】本题考查的是绝对值的性质,①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】
首先根据垂径定理得到OA=AB,结合等边三角形的性质即可求出∠AOC的度数.【详解】解:∵弦AC与半径OB互相平分,∴OA=AB,∵OA=OC,∴△OAB是等边三角形,∴∠AOB=60°,∴∠AOC=1°,故答案为1.【点睛】本题主要考查了垂径定理的知识,解题的关键是证明△OAB是等边三角形,此题难度不大.12、(,)【解析】
根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则△DEF的边长是△ABC边长的倍,∴点F的坐标为(1×,×),即(,),故答案为:(,).【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.13、3(x-1)2【解析】
先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14、(2a+1)(2a﹣1)【解析】
有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【详解】4a2﹣1=(2a+1)(2a﹣1).故答案为:(2a+1)(2a-1).【点睛】此题考查多项式因式分解,根据多项式的特点选择适合的分解方法是解题的关键.15、k≠1【解析】试题分析:因为1-xx-2+2=k2-x,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以x=3-k,因为原方程有解,所以考点:分式方程.16、【解析】
若一元二次方程有实根,则根的判别式△=b2-4ac≥0,且k-1≠0,建立关于k的不等式组,求出k的取值范围.【详解】解:∵方程有两个实数根,∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,解得:k≤且k≠1,故答案为k≤且k≠1.【点睛】此题考查根的判别式问题,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17、【解析】连接OA,作OM⊥AB于点M,∵正六边形ABCDEF的外接圆半径为2cm∴正六边形的半径为2cm,即OA=2cm在正六边形ABCDEF中,∠AOM=30°,∴正六边形的边心距是OM=cos30°×OA=(cm)故答案为.三、解答题(共7小题,满分69分)18、(1)详见解析;(2)详见解析;(3)【解析】
(1)利用等腰三角形的性质和三角形内角和即可得出结论;
(2)先判断出OE=AC,即可得出OE=BD,即可得出结论;
(3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.【详解】(1)∵AD=BD,
∴∠B=∠BAD,
∵AD=CD,
∴∠C=∠CAD,
在△ABC中,∠B+∠C+∠BAC=180°,
∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
∴∠B+∠C=90°,
∴∠BAC=90°,(2)如图②,连接与,交点为,连接四边形是矩形(3)如图3,过点做于点四边形是矩形,是等边三角形,由(2)知,在中,,【点睛】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出△ABE是底角为30°的等腰三角形,进而构造直角三角形.19、(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程.【解析】
(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)设乙队施工y天完成该项工程,根据题意列不等式解不等式即可.【详解】(1)由题意知,甲队单独施工完成该项工程所需时间为1÷=90(天).设乙队单独施工需要x天完成该项工程,则,去分母,得x+1=2x.解得x=1.经检验x=1是原方程的解.答:乙队单独施工需要1天完成.(2)设乙队施工y天完成该项工程,则1-解得y≥2.答:乙队至少施工l8天才能完成该项工程.20、(1)见解析;(2)成立;(3)【解析】
(1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,在AD上取DG=BD,延长CG交AK于M,延长KO交⊙O于N,连接CN、AN,求出关于a的方程,再求出a即可.【详解】(1)证明:∵AB为直径,∴,∵于D,∴,∴,,∴;(2)成立,证明:连接OC,由圆周角定理得:,∵,∴,∵,∴,∴;(3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根据圆周角定理得:,∴,∴由三角形内角和定理得:,∴,∴,同理,∵,∴,在AD上取,延长CG交AK于M,则,,∴,∴,延长KO交⊙O于N,连接CN、AN,则,∴,∵,∴,∴四边形CGAN是平行四边形,∴,作于T,则T为CK的中点,∵O为KN的中点,∴,∵,,∴由勾股定理得:,∴,作直径HS,连接KS,∵,,∴由勾股定理得:,∴,∴,设,,∴,,∵,∴,解得:,∴,∴.【点睛】本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.21、(1)证明见解析(2)m=1或m=-1【解析】试题分析:(1)由于m≠0,则计算判别式的值得到,从而可判断方程总有两个不相等的实数根;
(2)先利用求根公式得到然后利用有理数的整除性确定整数的值.试题解析:(1)证明:∵m≠0,∴方程为一元二次方程,∴此方程总有两个不相等的实数根;(2)∵∵方程的两个实数根都是整数,且m是整数,∴m=1或m=−1.22、.【解析】
先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取±1,2,所以把x=0代入计算即可.【详解】,====,当x=0时,原式=.23、(1)y=﹣x+1;(2)﹣1<x<2;(3)3;【解析】
(1)根据待定系数法求一次函数和二次函数的解析式即可.(2)根据图象以及点A,B两点的坐标即可求出使二次函数的值大于一次函数的值的x的取值范围;(3)连接AC、BC,设直线AB交y轴于点D,根据即可求出△ABC的面积.【详解】(1)把A(﹣1,2)代入y=﹣x2+c得:﹣1+c=2,解得:c=3,∴y=﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年小自考公共事业管理必考知识点试题及答案
- 2017年广东b证试题及答案
- 汽车空调系统的维修与保养试题及答案
- 2024年美容师考试技能提升同步公务员省考试题及答案
- 2024年二手车评估师的考前心理调节技巧试题及答案
- 2024年汽车美容师个人职业定位试题及答案
- 汽车美容师时效性服务与客户体验试题及答案
- 食品检验实验室管理试题及答案
- 2020年mpacc英语试题及答案
- 宠物营养师最常见误区试题及答案
- 2024年安徽省合肥市新站区中考一模数学试题
- 智联招聘测评题库2024答案
- 地震应急疏散演练方案安全教育
- 无人生还介绍读后感课件
- 彝族服饰简要介绍课件
- 延迟焦化装置吸收稳定系统工艺与操作资料课件
- 教师职业道德-爱国守法
- 医疗纠纷的法律风险与法律防范
- 迎审指导及注意事项
- 山东省汽车维修工时定额(T-SDAMTIA 0001-2023)
- 《铜产业链》课件
评论
0/150
提交评论