版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第=page22页,共=sectionpages33页2021年台湾省中考数学试卷一、选择题(本大题共26小题,共78.0分)如图的坐标平面上有A、B、C、D四点.根据图中各点位置判断,哪一个点在第二象限( )A.A
B.B
C.C
D.D算式(−8)+(−2)×(−3)之值为何( )A.−14 B.−2 C.18 D.30若二元一次联立方程式x=4y6y−x=10的解为x=a,y=b,则a+b之值为何?( )A.−15 B.−3 C.5 D.25如图,矩形ABCD、△BDE中,A点在BE上.若矩形ABCD的面积为20,△BDE的面积为24,则△ADE的面积为何?( )A.10
B.12
C.14
D.1656是53的多少倍?( )A.2 B.3 C.25 D.125下列等式何者不成立( )A.43+23=63 B.43已知缆车从起点行驶到终点需花费8分钟,如图表示行驶过程中缆车的海拔高度与行驶时间的关系.根据如图判断,下列叙述何者正确?( )A.终点的海拔高度比起点高300公尺,行驶时间的前4分钟都在上升
B.终点的海拔高度比起点高300公尺,行驶时间的末4分钟都在上升
C.终点的海拔高度比起点高350公尺,行驶时间的前4分钟都在上升
D.终点的海拔高度比起点高350公尺,行驶时间的末4分钟都在上升利用乘法公式判断,下列等式何者成立?( )A.2482+248×52+522=3002 B.如图为甲城市6月到9月外国旅客人数的折线图.根据如图判断哪一个月到甲城市的外国旅客中,旅客人数最少的国家是美国?( )A.6 B.7 C.8 D.9将一半径为6的圆形纸片,沿着两条半径剪开形成两个扇形.若其中一个扇形的弧长为5π,则另一个扇形的圆心角度数是多少?( )A.30 B.60 C.105 D.210动物园准备了100张刮刮乐,打算送给开幕当日的前100位游客每人一张,其中可刮中奖品的刮刮乐共有32张,如表为奖品的种类及数量.若小柏为开幕当日的第一位游客,且每张刮刮乐被小柏拿到的机会相等,则小柏刮中玩偶的机率为何?( )奖品数量北极熊玩偶一个1狮子玩偶一个1造型马克杯一个10纪念钥匙圈一个20A.12 B.116 C.825美美和小仪到超市购物,且超市正在举办摸彩活动,单次消费金额每满100元可以拿到1张摸彩券.已知美美一次购买5盒饼干拿到3张摸彩券;小仪一次购买5盒饼干与1个蛋糕拿到4张摸彩券.若每盒饼干的售价为x元,每个蛋糕的售价为150元,则x的范围为下列何者?( )A.50≤x<60 B.60≤x<70 C.70≤x<80 D.80≤x<90已知a1,a2,…,a40为一等差数列,其中a1为正数,且aA.a21+a22>0 B.a21已知a=−5223,b=6263,c=−A.|a+b+c| B.|a+b−c| C.|a−b+c| D.|a−b−c|已知△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,且E点在AE上,B、F、C、D四点共线,如图所示.若∠A=40°,∠CED=35°,则下列叙述何者正确?( )A.EF=EC,AE=FC B.EF=EC,AE≠FC
C.EF≠EC,AE=FC D.EF≠EC,AE≠FC如图为某超商促销活动的内容,今阿贤到该超商拿相差4元的2种饭团各1个结帐时,店员说:要不要多买2瓶指定饮料?搭配促销活动后2组优惠价的金额,只比你买2个饭团的金额多30元.若阿贤只多买1瓶指定饮料,且店员会以对消费者最便宜的方式结帐,则与原本只买2个饭团相比,他要多付多少元?( )A.12 B.13 C.15 D.16如图,梯形ABCD中,AD//BC,有一圆O通过A、B、C三点,且AD与圆O相切于A点.若∠B=58°,则BC的度数为何?( )A.116
B.120
C.122
D.128若坐标平面上二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,则a、b、A.a=1,b=0,c=−2 B.a=2,b=6,c=0
C.a=−1,b=−3,c=0 D.a=−2,b=−3,c=−2如图,△ABC中,D、E、F三点分别在AB、BC、AC上,且四边形BEFD是以DE为对称轴的线对称图形,四边形CFDE是以FE为对称轴的线对称图形.若∠C=40°,则∠DFE的度数为何?( )A.65
B.70
C.75
D.80已知捷立租车行有甲、乙两个营业据点,顾客租车后当日须于营业结束前在任意一个据点还车.某日营业结束清点车辆时,发现在甲归还的自行车比从甲出租的多4辆.若当日从甲出租且在甲归还的自行车为15辆,从乙出租且在乙归还的自行车为13辆,则关于当日从甲、乙出租的自行车数量下列比较何者正确?( )A.从甲出租的比从乙出租的多2辆 B.从甲出租的比从乙出租的少2辆
C.从甲出租的比从乙出租的多6辆 D.从甲出租的比从乙出租的少6辆如图,四边形ABCD中,∠1、∠2、∠3分别为∠A、∠B、∠C的外角.判断下列大小关系何者正确?( )A.∠1+∠3=∠ABC+∠D
B.∠1+∠3<∠ABC+∠D
C.∠1+∠2+∠3=360°
D.∠1+∠2+∠3>360°
若a、b为正整数,且a×b=25×32×5,则下列何者不可能为aA.1 B.6 C.8 D.12如图,菱形ABCD中,E点在BC上,F点在CD上,G点、H点在AD上,且AE//HC//GF.若AH=8,HG=5,GD=4,则下列选项中的线段,何者长度最长?( )A.CF
B.FD
C.BE
D.EC小文原本计划使用甲、乙两台影印机于10:00开始一起印制文件并持续到下午,但10:00时有人正在使用乙,于是他先使用甲印制,于10:05才开始使用乙一起印制,且到10:15时乙印制的总张数与甲相同,到10:45时甲、乙印制的总张数合计为2100张.若甲、乙的印制张数与印制时间皆成正比,则依照小文原本的计划,甲、乙印制的总张数会在哪个时间达到2100张?( )A.10:40 B.10:41 C.10:42 D.10:43如图,锐角三角形ABC中,D点在BC上,∠B=∠BAD=∠CAD.今欲在AD上找一点P,使得∠APC=∠ADB,以下是甲、乙两人的作法:
(甲)作AC的中垂线交AD于P点,则P即为所求.
(乙)以C为圆心,CD长为半径画弧,交AD于异于D点的一点P,则P即为所求.
对于甲、乙两人的作法,下列判断何者正确?( )A.两人皆正确 B.两人皆错误
C.甲正确,乙错误 D.甲错误,乙正确如图,I为△ABC的内心,有一直线通过I点且分别与AB、AC相交于D点、E点.若AD=DE=5,AE=6,则I点到BC的距离为何?( )A.2411
B.3011
C.2
二、解答题(本大题共2小题,共16.0分)碳足迹标签是一种碳排放量的标示方式,让大众了解某一产品或服务所产生的碳排放量多寡,如图所示.
碳足迹标签的数据标示有其规定,以碳排放量大于20公克且不超过40公克为例,此范围内的碳足迹数据标示只有20、22、24、…、38、40公克等11个偶数;碳足迹数据标示决定于碳排放量与这11个偶数之中的哪一个差距最小,两者对应标示的范例如下表所示.碳排放量碳足迹数据标示20.2公克20公克20.8公克20公克21.0公克20公克或22公克皆可23.1公克24公克请根据上述资讯,回答下列问题,并详细解释或完整写出你的解题过程.
(1)若有一个产品的碳足迹数据标示为38公克,则它可能的碳排放量之最小值与最大值分别为多少公克?
(2)承(1),当此产品的碳排放量减少为原本的90%时,请求出此产品碳足迹数据标示的所有可能情形.
凯特平时常用底面为矩形的模具制作蛋糕,并以平行于模具任一边的方式进行横切或纵切,横切都是从模具的左边切割到模具的右边,纵切都是从模具的上边切割到模具的下边.用这种方式,可以切出数个大小完全相同的小块蛋糕.在切割后,他发现小块蛋糕接触模具的地方外皮比较焦脆,以如图为例,横切2刀,纵切3刀,共计5刀,切出(2+1)×(3+1)=12个小块蛋糕,其中侧面有焦脆的小块蛋糕共有10个,所有侧面都不焦脆的小块蛋糕共有2个.
请根据上述切割方式,回答下列问题,并详细解释或完整写出你的解题过程:
(1)若对一块蛋糕切了4刀,则可切出几个小块蛋糕?请写出任意一种可能的蛋糕块数即可.
(2)今凯特根据一场聚餐的需求,打算制作出恰好60个所有侧面都不焦脆的小块蛋糕,为了避免劳累并加快出餐速度,在不超过20刀的情况下,请问凯特需要切几刀,才可以达成需求?请写出所有可能的情形.
答案和详解1.【答案】A
【详解】解:A、点A在第二象限,故此选项符合题意;
B、点B在第三象限,故此选项不符合题意;
C、点C在y轴上,故此选项不符合题意;
D、点D在第四象限,故此选项不符合题意.
故选:A.
根据坐标平面的划分解答,坐标平面的划分:建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.
本题考查了点的坐标,熟记坐标平面的划分方法是解题的关键.
2.【答案】B
【详解】解:(−8)+(−2)×(−3)
=(−8)+6
=−2,
故选:B.
根据有理数的乘法和加法可以解答本题.
本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,先乘除,后加减.
3.【答案】D
【详解】解:x=4y①6y−x=10②,
①+②得:6y=4y+10,
∴y=5,
把y=5代入①得:x=20,
∴a+b=x+y=20+5=25,
故选:D.
运用加减消元法求出方程组的解,即可得到a,b的值,再求a+b即可.
本题考查了二元一次方程组的解法,掌握代入消元法和加减消元法的方法是解题的关键.
4.【答案】【详解】解:∵四边形ABCD是矩形,
∴AB=CD,AD=CB.
在△ABD和△CDB中,
AD=CBBD=DBAB=CD,
∴△ABD≌△CDB(SSS).
∴S△ABD=S△CDB=12S矩形ABCD=12×20=10;
∵S△BED=【详解】解:∵56÷53=【详解】解:A、原式=63,所以A选项不符合题意;
B、原式=23,所以B选项不符合题意;
C、原式=8×3=24,所以C选项符合题意;
D、原式=2,所以D选项不符合题意.
故选:C.
根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.
本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解决问题的关键.
7.【详解】解:由图象可知,终点的海拔高度比起点高:350−50=300(公尺),行驶时间的前2分钟都在上升,随后2分钟在下降,行驶时间的末4分钟都在上升,
故符合题意的选项是B.
故选:B.
根据图象可以看出终点的海拔高度比起点高300公尺,行驶时间的末4分钟都在上升.
此题主要考查了利用图象得到正确信息,体现了数学中的数形结合思想.
8.【答案】C
【详解】解:选项A:2482+248×52+522不符合完全平方公式的特征且计算错误,完全平方公式的中间一项为2×248×52,所以不符合题意;
选项B:2482−248×48−482不符合完全平方公式特征且计算错误,最后一项应为+482,所以不符合题意;
选项C:2482+2×248×52+522【详解】解:根据折线统计图得到,8月份到甲城市的外国旅客中,旅客人数最少的国家是美国.
故选:C.
根据折线统计图得出结论.
此题考查了折线统计图,看懂折线统计图的变换趋势是解题的关键.
10.【答案】D
【详解】解:由题意可求得圆形的周长C=2π×6=12π,
其中一个扇形的弧长L1=5π,则另一个扇形的弧长L2=12π−5π=7π,
设另一个扇形的圆心角度数为n°,
根据弧长公式:L=nπr180,有:
7π=nπ×6180,解得n=210【详解】解:∵共有100张刮刮乐,其中玩偶有2个,
∴小柏刮中玩偶的概率是2100=150.
故选:D.
用玩偶的个数除以刮刮乐的总张数即可.
本题主要考查了概率公式:P(A)=mn,n表示该试验中所有可能出现的基本结果的总数目,m【详解】解:第一次拿到3张彩卷说明消费金额达到了300,但是不足400,
第二次拿到了4张彩卷说明消费金额达到了400,但是不足500,
因此可得,
300≤5x<400400≤5x+150<500,
解得,60≤x<70,
故选:B.
首先根据题意可知,拿到3张摸彩卷的意思即是消费金额大于等于300小于400,拿到4张摸彩卷的意思即是消费金额大于等于400小于500,根据题意列出不等式组,解不等式组即可.
本题考查一元一次不等式组的应用,确定消费金额与彩卷数量的不等关系是解题的关键.
13.【答案】【详解】解:设公差为d,
∵a20+a22=0,
∴a21−d+a21+d=0,
解得a21=0,
∵a1,a2,…,a40为一等差数列,其中a1为正数,
∴a22<0,
∴a21【详解】解:∵a=−5223,b=6263,c=−7293,
a−b+c是最小的,
∴【详解】解:∵△ABC≌△DEF,
∴∠A=∠D=40°,AC=DF,∠ACB=∠DFE,
∵∠ACB=∠DFE,
∴EF=EC.
∵∠CED=35°,∠D=40°,
∴∠D>∠CED.
∴CE>CD.
∵AC=DF,
∴AC−CE<DF−CD,即AE<FC.
∴AE≠FC.
∴EF=EC,AE≠FC.
故选:B.
由△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,可得∠A=∠D=40°,AC=DF,∠ACB=∠DFE,可得EF=EC;∠CED=35°,∠D=40°可得∠D>∠CED,由大角对大边可得CE>CD;利用AC=DF,可得AC−CE<DF−CD,即AE<FC,由上可得正确选项.
本题主要考查了全等三角形的性质.利用全等三角形对应角相等,对应边相等是解题的关键.
16.【答案】B
【详解】解:设价格较低的饭团的售价为x元,价格较高的饭团的售价为y元,
依题意得:x+4=y39×2−x−y=30,
解得:x=22y=26,
∴39+x−(x+y)=13.
故选:B.
设价格较低的饭团的售价为x元,价格较高的饭团的售价为y元,根据“两种饭团的价格之差为4元,且搭配促销活动后2组优惠价的金额比购买2个饭团的金额多30元”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入39+x−(x+y)中即可求出结论.
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
17.【详解】解:连接AO,并延长AO与BC交于点M,连接AC,
∵AD与圆O相切于A点,
∴MA⊥AD,
∵AD//BC,
∴AM⊥BC,
∴BM=MC,
∴AM垂直平分BC,
∴AB=AC,
∴∠ACB=∠B=58°,
∴∠BAC=180°−2×58°=64°,
∴BC的度数为128°,
故选:D.
连接AO,并延长AO与BC交于点M,连接AC,由切线的性质和AD//BC求得AM垂直平分BC,进而得到∠BAC的度数,根据圆周角定理即可解答.
本题考查了切线的性质,圆周角定理和梯形的性质,解决本题的关键利用切线的性质和梯形的性质构造等腰三角形,求出BC所对的圆周角.
18.【答案】A
【详解】解:∵二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,
∴a=1.
故选:A.
根据二次函数的平移性质得出a不发生变化,即可判断a=1.
此题主要考查了二次函数的平移性质,根据已知得出【详解】解:∵四边形BEFD是以DE为对称轴的线对称图形,四边形CFDE是以FE为对称轴的线对称图形,
∴∠BED=∠DEF=∠CEF=180°3=60°,∠EDF=∠C=40°,
∴∠DFE=180°−∠DEF−∠EDF=80°,
故选:D.
根据轴对称的性质可得∠BED=∠DEF=∠CEF,据此可得∠DEF=60°,∠EDF=∠C=40°,再根据三角形的内角和定理可得∠DFE的度数.
本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.
【详解】解:设当日从甲、乙出租的自行车数量分别为x辆,y辆,根据题意得:
15+(y−13)−x=4,
所以y−x=2,
即从甲出租的比从乙出租的少2辆.
故选:B.
设当日从甲、乙出租的自行车数量分别为x辆,y辆,根据题意列方程组解答即可.
此题主要考查了二元一次方程组在实际生活中的应用,关键是找出题目中的等量关系,列出方程组.
21.【答案】A
【详解】解:如图,连结BD,
∵∠1=∠ABD+∠ADB,∠3=∠DBC+∠BDC,
∴∠1+∠3=∠ABD+∠ADB+∠DBC+∠BDC=∠ABC+∠ADC,
∵多边形的外角和是360°,
∴∠1+∠2+∠3<360°.
故选:A.
根据多边形的外角和是360°及三角形的外角定理求解判断即可.
此题考查了多边形的内角与外角,熟记多边形的外角和是360°是解题的基础.
22.【答案】C
【详解】解:∵最大公因数为a、b都有的因数,
而8=23,a×b=25×32×5,
a、b不可能都含有23,
∴8不可能为a、b的最大公因数.
故选:C.
根据【详解】解:∵AH=8,HG=5,GD=4,
∴AD=8+5+4=17,
∵四边形ABCD为菱形,
∴BC=CD=AD=17,
∵AE//HC,AD//BC,
∴四边形AECH为平行四边形,
∴CE=AH=8,
∴BE=BC−CE=17−8=9,
∵HC//GF,
∴DFFC=DGGH,即DF17−DF=45,
解得:DF=689,
∴FC=17−689=859,
∵【详解】解:设甲影印机每分钟印制x张,乙影印机每分钟印制y张,
依题意得:15x=10y45x+40y=2100,
解得:x=20y=30,
∴2100x+y=210020+30=42,
∴依照小文原本的计划,甲、乙印制的总张数会在10:42达到2100张.
故选:C.
设甲影印机每分钟印制x张,乙影印机每分钟印制y张,根据“10:00时使用甲印制,10:05才开始使用乙一起印制,到10:15时乙印制的总张数与甲相同,到10:45时甲、乙印制的总张数合计为2100张”,即可得出关于x,y的二元一次方程组,解之即可得出x,y【详解】解:两人都是正确的.
理由:甲,∵点P在AC的垂直平分线上,
∴PA=PC,
∴∠PAC=∠PCA,
∵∠B=∠BAD=∠CAD,
∴∠B=∠BAD=∠CAP=∠ACP,
∵∠ADB+∠B+∠BAD=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化妆技术培训中的妆容设计和产品选择
- 2021年10月广西钦州市浦北县事业单位公开招聘工作人员简章模拟卷(一)
- 2021年10月广西南宁经济技术开发区第十四期专业技术岗公开招聘冲刺题(一)
- 医药行业XO%26科研试剂:低谷已过复苏将至
- 区块链技术在数字创意广告中的创新应用考核试卷
- 劳动节复工复产高风险作业的安全管理策略考核试卷
- 城市道路绿化养护合同范本
- 传媒公司兼职摄影师合同模板
- 旅游景点加油站施工协议
- 智慧农业项目招投标评标细则
- 《老年人生活照护》试卷A卷及答案
- 消防安全知识培训课件
- 高中历史选择性必修2知识点总结归纳
- 16J914-1 公用建筑卫生间
- 物联网应用技术职业生涯规划
- 2024年广东恒健投资控股有限公司招聘笔试参考题库含答案解析
- 2型糖尿病人生活质量评定量表(中文版)
- GR326CORE规范讲解
- 新训工作总结(共5篇)
- 五年级下册牛津英语期中试卷【精】
- 《垃圾分类》ppt课件
评论
0/150
提交评论