版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一个不透明的袋子中装有仅颜色不同的1个红球和3个绿球,从袋子中随机摸出一个小球,记下颜色后,不放回再随机摸出一个小球,则两次摸出的小球恰好是一个红球和一个绿球的概率为()A. B. C. D.2.某专卖店专营某品牌女鞋,店主对上一周中不同尺码的鞋子销售情况统计如表:尺码3536373839平均每天销售数量(双)281062该店主决定本周进货时,增加一些37码的女鞋,影响该店主决策的统计量是()A.平均数 B.方差 C.众数 D.中位数3.某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为()A.15元 B.400元 C.800元 D.1250元4.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃ B.众数是28℃ C.中位数是24℃ D.平均数是26℃5.二次函数y=ax2+bx+c(a≠1)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,1)、(x2,1),其中1<x2<1,有下列结论:①b2﹣4ac>1;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④当m为任意实数时,a﹣b≤am2+bm;⑤3a+c=1.其中,正确的结论有()A.①③④ B.①②④ C.③④⑤ D.①③⑤6.下列事件是必然事件的是()A.3个人分成两组,并且每组必有人,一定有2个人分在一组B.抛一枚硬币,正面朝上C.随意掷两个均匀的骰子,朝上面的点数之和为6D.打开电视,正在播放动画片7.如图,在中,,,点从点沿边,匀速运动到点,过点作交于点,线段,,,则能够反映与之间函数关系的图象大致是()A. B. C. D.8.学校体育室里有6个箱子,分别装有篮球和足球(不混装),数量分别是8,9,16,20,22,27,体育课上,某班体育委员拿走了一箱篮球,在剩下的五箱球中,足球的数量是篮球的2倍,则这六箱球中,篮球有()箱.A.2 B.3 C.4 D.59.如图,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于()A. B. C. D.10.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16C.q≤4 D.q≥411.如图,已知则添加下列一个条件后,仍无法判定的是()A. B. C. D.12.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3cm,那么PP′的长为()A. B. C. D.二、填空题(每题4分,共24分)13.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是________.14.某毛绒玩具厂对一批毛绒玩具进行质量抽检,相关数据如下:抽取的毛绒玩具数2151111211511111115112111优等品的频数19479118446292113791846优等品的频率1.9511.9411.9111.9211.9241.9211.9191.923从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是__.(精确到15.投掷一枚材质均匀的正方体骰子,向上的一面出现的点数是2的倍数的概率等于_________.16.如图,是用卡钳测量容器内径的示意图.量得卡钳上A,D两端点的距离为4cm,,则容器的内径BC的长为_____cm.17.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB=,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;18.已知x1,x2是关于x的方程x2﹣kx+3=0的两根,且满足x1+x2﹣x1x2=4,则k的值为_____.三、解答题(共78分)19.(8分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当时,;②当时,(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.20.(8分)如图所示,点A(,3)在双曲线y=上,点B在双曲线y=之上,且AB∥x轴,C,D在x轴上,若四边形ABCD为矩形,求它的面积.21.(8分)已知,如图,有一块含有30°的直角三角形的直角边的长恰与另一块等腰直角三角形的斜边的长相等.把该套三角板放置在平面直角坐标系中,且(1)若某开口向下的抛物线的顶点恰好为点,请写出一个满足条件的抛物线的解析式.(2)若把含30°的直角三角形绕点按顺时针方向旋转后,斜边恰好与轴重叠,点落在点,试求图中阴影部分的面积(结果保留)22.(10分)如图,AB是的直径,点C、D在上,且AD平分,过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F,G为AB的下半圆弧的中点,DG交AB于H,连接DB、GB.证明EF是的切线;求证:;已知圆的半径,,求GH的长.23.(10分)如图,是□ABCD的边延长线上一点,连接,交于点.求证:△∽△CDF.24.(10分)如图,在中,,,.动点从点出发,沿线段向终点以/的速度运动,同时动点从点出发,沿折线以/的速度向终点运动,当有一点到达终点时,另一点也停止运动,以、为邻边作设▱与重叠部分图形的面积为点运动的时间为.(1)当点在边上时,求的长(用含的代数式表示);(2)当点落在线段上时,求的值;(3)求与之间的函数关系式,并写出自变量的取值范围.25.(12分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?26.在不透明的袋中有大小形状和质地等完全相同的个小球,它们分别标有数字,从袋中任意摸出一小球(不放回),将袋中的小球搅匀后,再从袋中摸出另一小球.(1)请你用列表或画树状图的方法表示摸出小球上的数字可能出现的所有结果;(2)规定:如果摸出的两个小球上的数字都是方程的根,则小明贏;如果摸出的两个小球上的数字都不是方程的根,则小亮赢.你认为这个游戏规则对小明、小亮双方公平吗?请说明理由.
参考答案一、选择题(每题4分,共48分)1、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球恰好是一个红球和一个绿球的情况,再利用概率公式即可求得答案.【详解】画树状图为:共有12种等可能的结果数,其中两次摸出的小球恰好是一个红球和一个绿球的结果数为6,所以两次摸出的小球恰好是一个红球和一个绿球的概率==.故选A.【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.2、C【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.3、D【分析】将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.【详解】解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故当x=15时,y有最大值,最大值为1250即利润获得最多为1250元故选:D.【点睛】此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.4、B【解析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.详解:由图可得,极差是:30-20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C错误,平均数是:℃,故选项D错误,故选B.点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.5、A【分析】根据函数图象和二次函数的性质,可以判断各个小题中的结论是否成立,本题得以解决.【详解】∵二次函数y=ax2+bx+c(a≠1)的图象与x轴有两个交点,∴b2﹣4ac>1,故①正确;∵该函数图象的对称轴是x=﹣1,当x=1时的函数值小于﹣1,∴x=﹣2时的函数值和x=1时的函数值相等,都小于﹣1,∴4a﹣2b+c<﹣1,故②错误;∵该函数图象的对称轴是x=﹣1,与x轴的交点为(x1,1)、(x2,1),其中1<x2<1,∴﹣3<x,1<﹣2,故③正确;∵当x=﹣1时,该函数取得最小值,∴当m为任意实数时,a﹣b≤am2+bm,故④正确;∵1,∴b=2a.∵x=1时,y=a+b+c>1,∴3a+c>1,故⑤错误.故选:A.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数图象与系数的关系、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.6、A【分析】根据必然事件是指在一定条件下,一定发生的事件,对每一选项判断即可.【详解】解:A、3个人分成两组,并且每组必有人,一定有2个人分在一组是必然事件,符合题意,故选A;B、抛一枚硬币,正面朝上是随机事件,故不符合题意,B选项错误;C、随意掷两个均匀的骰子,朝上面的点数之和为6是随机事件,故不符合题意,C选项错误;D、打开电视,正在播放动画片是随机事件,故不符合题意,D选项错误;故答案选择D.【点睛】本题考查的是事件的分类,事件分为必然事件,随机事件和不可能事件,掌握概念是解题的关键.7、D【分析】分两种情况:①当P点在OA上时,即2≤x≤2时;②当P点在AB上时,即2<x≤1时,求出这两种情况下的PC长,则y=PC•OC的函数式可用x表示出来,对照选项即可判断.【详解】解:∵△AOB是等腰直角三角形,AB=,∴OB=1.①当P点在OA上时,即2≤x≤2时,PC=OC=x,S△POC=y=PC•OC=x2,是开口向上的抛物线,当x=2时,y=2;OC=x,则BC=1-x,PC=BC=1-x,S△POC=y=PC•OC=x(1-x)=-x2+2x,是开口向下的抛物线,当x=1时,y=2.综上所述,D答案符合运动过程中y与x的函数关系式.故选:D.【点睛】本题主要考查了动点问题的函数图象,解决这类问题要先进行全面分析,根据图形变化特征或动点运动的背景变化进行分类讨论,然后动中找静,写出对应的函数式.8、B【分析】先计算出这些水果的总质量,再根据剩下的足球与篮球的数量关系,通过推理判断出拿走的篮球的个数,从而计算出剩余篮球的个数.【详解】解:∵8+9+16+20+22+27=102(个)根据题意,在剩下的五箱球中,足球的数量是篮球的2倍,∴剩下的五箱球中,篮球和足球的总个数是3的倍数,由于102是3的倍数,所以拿走的篮球个数也是3的倍数,只有9和27符合要求,假设拿走的篮球的个数是9个,则(102-9)÷3=31,剩下的篮球是31个,由于剩下的五个数中,没有哪两个数的和是31个,故拿走的篮球的个数不是9个,假设拿走的篮球的个数是27个,则(102-27)÷3=25,剩下的篮球是25个,只有9+16=25,所以剩下2箱篮球,故这六箱球中,篮球有3箱,故答案为:B.【点睛】本题主要考查的是学生能否通过初步的分析、比较、推理得出正确的结论,培养学生有顺序、全面思考问题的意识.9、A【解析】直接利用锐角三角函数关系得出sinB的值.【详解】∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB=故选A.【点睛】此题主要考查了锐角三角函数关系,正确把握定义是解题关键.10、A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选A.11、A【分析】先根据∠1=∠2得出∠BAC=∠DAE,再由相似三角形的判定定理对各选项进行逐一判定即可.【详解】解:∵∠1=∠2,
∴∠BAC=∠DAE.A.,∠B与∠D的大小无法判定,∴无法判定△ABC∽△ADE,故本选项符合题意;B.,∴△ABC∽△ADE,故本选项不符合题意;C.∴△ABC∽△ADE,故本选项不符合题意;D.∴△ABC∽△ADE,故本选项不符合题意;故选:A【点睛】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.12、D【分析】由题意易证,则有,进而可得,最后根据勾股定理可求解.【详解】解:∵△ABC是等腰直角三角形,∴∠BAC=90°,AB=AC,∵将△ABP绕点A逆时针旋转后,能与△ACP′重合,∴,∵AP=3cm,∴,∵,∴,即,∴是等腰直角三角形,∴;故选D.【点睛】本题主要考查旋转的性质及等腰直角三角形的性质与判定,熟练掌握旋转的性质及等腰直角三角形的性质与判定是解题的关键.二、填空题(每题4分,共24分)13、①③⑤【解析】①根据拋物线的开口方向以及对称轴为x=1,即可得出a、b之间的关系以及ab的正负,由此得出①正确,根据抛物线与y轴的交点在y轴正半轴上,可知c为正结合a<0、b>0即可得出②错误,将抛物线往下平移3个单位长度可知抛物线与x轴只有一个交点从而得知③正确,根据拋物线的对称性结合抛物线的对称轴为x=1以及点B的坐标,即可得出抛物线与x轴的另一交点坐标,④正确,⑤根据两函数图象的上下位置关系即可解题.【详解】∵抛物线的顶点坐标A(1,3),∴对称轴为x=-=1,∴2a+b=0,①正确,∵a,b,抛物线与y轴交于正半轴,∴c∴abc0,②错误,∵把抛物线向下平移3个单位长度得到y=ax2+bx+c-3,此时抛物线的顶点也向下平移3个单位长度,∴顶点坐标为(1,0),抛物线与x轴只有一个交点,即方程ax2+bx+c=3有两个相等的实数根,③正确.∵对称轴为x=-=1,与x轴的一个交点为(4,0),根据对称性质可知与x轴的另一个交点为(-2,0),④错误,由抛物线和直线的图像可知,当1<x<4时,有y2<y1.,⑤正确.【点睛】本题考查了二次函数的图像和性质,熟悉二次函数的性质是解题关键.14、1.92【分析】由表格中的数据可知优等品的频率在1.92左右摆动,利用频率估计概率即可求得答案.【详解】观察可知优等品的频率在1.92左右,所以从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是1.92,故答案为:1.92.【点睛】本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,由此可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率的近似值,随着实验次数的增多,值越来越精确.15、【解析】分析:利用概率公式:一般地,如果在一次试验中,有n种可能得结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=,即要求解.详解:∵骰子的六个面上分别刻有1到6的点数,点数为2的倍数的有3个,分别为2、4、6;∴掷得朝上一面的点数为2的倍数的概率为:.故答案为:.点睛:本题考查了概率公式的知识,解题的关键是利用概率=所求情况数与总数之比进行求解.16、1【分析】依题意得:△AOD∽△BOC,则其对应边成比例,由此求得BC的长度.【详解】解:如图,连接AD,BC,∵,∠AOD=∠BOC,∴△AOD∽△BOC,∴,又AD=4cm,∴BC=AD=1cm.故答案是:1.【点睛】本题考查相似三角形的判定与性质的实际应用及分析问题、解决问题的能力.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.17、3或9或或【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠CAB=,∴,∵AB=10,∴BC=8,∴,∵点D为BC的中点,∴CD=4.∵∠ACB=∠DCE=90,①当∠CDE1=∠ABC时,△ACB∽△E1CD,如图∴,即,∴CE1=3,∵点E1在射线AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴,即,∴CE3=,∴AE3=6+=,同理:AE4=6-=.故答案为:3或9或或.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.18、2【分析】根据两根关系列出等式,再代入第二个代数式计算即可.【详解】∵x1、x2是方程x2﹣kx+1=0的两个根,∴x1+x2=k,x1x2=1.∵x1+x2﹣x1x2=k﹣1=4,∴k=2.故答案为:2.【点睛】本题考查一元二次方程的两根关系,关键在于熟练掌握基础知识,代入计算.三、解答题(共78分)19、(1)①,②.(2)无变化;理由参见解析.(3),.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.【详解】(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴,BD=8÷2=4,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴(2)如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,,∵AC=4,CD=4,CD⊥AD,∴AD=∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴BD=AC=.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC=,CD=4,CD⊥AD,∴AD=,∵点D、E分别是边BC、AC的中点,∴DE==2,∴AE=AD-DE=8-2=6,由(2),可得,∴BD=.综上所述,BD的长为或.20、1【分析】由点A的坐标以及AB∥x轴,可得出点B的坐标,从而得出AD、AB的长度,利用矩形的面积公式即可得出结论.【详解】解:∵A(,3),AB∥x轴,点B在双曲线y=之上,∴B(1,3),∴AB=1﹣=,AD=3,∴S=AB•AD=×3=1.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据点的横(纵)坐标求出纵(横)坐标是关键.21、(1);(2)【分析】(1)在Rt△OBA中,由∠AOB=30°,AB=3利用特殊角的正切值即可求出OB的长度,从而得出点A的坐标,利用顶点式即可求出函数解析式;
(2)在Rt△OBA中,利用勾股定理即可求出OA的长度,在等腰直角三角形ODC中,根据OC的长度可求出OD的长,结合图形即可得出阴影部分的面积为扇形AOA′的面积减去三角形ODC的面积,结合扇形与三角形的面积公式即可得出结论.【详解】解:(1)在中,,∴∴∴.∴抛物线的解析式是(2)由(1)可知,由题意得∴在中,∴∴【点睛】本题考查了勾股定理、特殊角的三角函数值、扇形的面积以及等腰直角三角形的性质,解题的关键是:(1)求出点A的坐标;(2)利用分割图形求面积法求出阴影部分的面积.本题属于中档题,难度不大,解决该题型题目时,将不规则的图形的面积表示成多个规则图形的面积之和(差)的形式是关键.22、(1)详见解析;(1)详见解析;(3).【解析】(1)由题意可证OD∥AE,且EF⊥AE,可得EF⊥OD,即EF是⊙O的切线;(1)由同弧所对的圆周角相等,可得∠DAB=∠DGB,由余角的性质可得∠DGB=∠BDF;(3)由题意可得∠BOG=90°,根据勾股定理可求GH的长.【详解】解:(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA又∵AD平分∠BAC,∴∠OAD=∠CAD∴∠ODA=∠CAD,∴OD∥AE,又∵EF⊥AE,∴OD⊥EF,∴EF是⊙O的切线(1)∵AB是⊙O的直径,∴∠ADB=90°∴∠DAB+∠OBD=90°由(1)得,EF是⊙O的切线,∴∠ODF=90°∴∠BDF+∠ODB=90°∵OD=OB,∴∠ODB=∠OBD∴∠DAB=∠BDF又∠DAB=∠DGB∴∠DGB=∠BDF(3)连接OG,∵G是半圆弧中点,∴∠BOG=90°在Rt△OGH中,OG=5,OH=OB﹣BH=5﹣3=1.∴GH==.【点睛】本题考查了切线的判定和性质,角平分线的性质,勾股定理,圆周角定理等知识,熟练运用切线的判定和性质解决问题是本题的关键.23、详见解析【分析】利用平行四边形的性质即可证明.【详解】证明:∵四边形ABCD是平行四边形,∴∠∠,∥,∴∠∠.∴△∽△【点睛】本题主要考查相似三角形的判定,掌握平行四边形的性质是解题的关键.24、(1);(2);(3)详见解析【分析】(1)根据动点从点出发,沿折线以/的速度向终点运动,得出,即可表达出AE的表达式;(2)由,可得,可得,列出方程即可求解;(3))分当时,当时,当时,三种情况进行画图解答即可.【详解】解:(1)当点在边上时,,∴∴.(2)如图:当点落在线段上时,此时:在中,,,∴∴在▱中:,,,,解得.(3)依题意得:在中,,,∴∴当时,此时E在CB边上,此时如图:过D作DM⊥BC于M∴∵∴∴∴∴∴∴当时,E在AB边上,F在BC的下方,此时:如图:过E作EP⊥AC于E,EF交BC于Q,连接CE∴∴∵∴∴∴∴∴在▱中EQ//AC∴∴∴∴∴当时,E在AB边上,F在BC的上方,此时:如图:过E作EP⊥AC于E,∴∴∵∴∴∴∴∴∴综上所述:与之间的函数关系式是:【点睛】本题考查了相似三角形的性质、二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《大学体育》2022-2023学年第一学期期末试卷
- 淮阴工学院《药物分析》2022-2023学年第一学期期末试卷
- DB5116T19-2024电梯维护保养单位质量与信用评价规范
- DB3305-T 317-2024农村残疾人就业创业帮扶基地建设与服务规范
- DB 4601-T 11-2024集体用餐配送单位布局设置与加工配送管理规范
- 小学班主任的工作计划
- 建筑物拆除工程对土地资源的影响分析考核试卷
- 畜牧业的税收政策与财务管理考核试卷
- 区块链在医疗健康中的数据共享与隐私保护考核试卷
- 水运运输项目投资分析考核试卷
- 吉他小白的弹奏秘籍:指弹吉他入门教程
- 英语口语与演讲知到章节答案智慧树2023年青岛农业大学
- 学校食品安全总监职责,学校食品安全员守则,学校食品安全风险日管控、周排查、月调度工作制度
- 激光焊接机工艺培训讲解
- 坚持以人民为中心发展思想
- 新人教版高中英语必修一至必修五完整课文译文
- (部编版)二年级语文上册必背课文默写填空
- 夏商周考古课件 第4章 殷墟文化(4-6节)
- GB/T 708-2019冷轧钢板和钢带的尺寸、外形、重量及允许偏差
- 胆囊癌和胆管癌2021NCCN患者指南中文版
- GB/T 17395-2008无缝钢管尺寸、外形、重量及允许偏差
评论
0/150
提交评论