2023年河北省保定市普通高校对口单招数学自考真题(含答案)_第1页
2023年河北省保定市普通高校对口单招数学自考真题(含答案)_第2页
2023年河北省保定市普通高校对口单招数学自考真题(含答案)_第3页
2023年河北省保定市普通高校对口单招数学自考真题(含答案)_第4页
2023年河北省保定市普通高校对口单招数学自考真题(含答案)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年河北省保定市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.已知{an}是等差数列,a1+a7=-2,a3=2,则{an}的公差d=()A.-1B.-2C.-3D.-4

2.A.

B.

C.

D.

3.函数f(x)的定义域是()A.[-3,3]B.(-3,3)C.(-,-3][3,+)D.(-,-3)(3,+)

4.若输入-5,按图中所示程序框图运行后,输出的结果是()A.-5B.0C.-1D.1

5.己知向量a=(3,-2),b=(-1,1),则3a+2b

等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)

6.如下图所示,转盘上有8个面积相等的扇形,转动转盘,则转盘停止转动时,指针落在阴影部分的概率为()A.1/8B.1/4C.3/8D.1/2

7.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切

8.若不等式x2+x+c<0的解集是{x|-4<x<3},则c的值等于()A.12B.-12C.11D.-11

9.已知函数f(x)=x2-x+1,则f(1)的值等于()A.-3B.-1C.1D.2

10.过点M(2,1)的直线与x轴交与P点,与y轴交与交与Q点,且|MP|=|MQ|,则此直线方程为()A.x-2y+3=0B.2x-y-3=0C.2x+y-5=0D.x+2y-4=0

二、填空题(10题)11.已知_____.

12.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.

13.设{an}是公比为q的等比数列,且a2=2,a4=4成等差数列,则q=

14.有一长为16m的篱笆要围成一个矩形场地,则矩形场地的最大面积是________m2.

15.设A=(-2,3),b=(-4,2),则|a-b|=

16.等差数列{an}中,已知a4=-4,a8=4,则a12=______.

17.

18.

19.口袋装有大小相同的8个白球,4个红球,从中任意摸出2个,则两球颜色相同的概率是_____.

20.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,一2),则圆C的方程为___________.

三、计算题(5题)21.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

22.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

23.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

24.解不等式4<|1-3x|<7

25.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

四、简答题(10题)26.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值

27.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长

28.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。

29.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数

30.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点

31.一条直线l被两条直线:4x+y+6=0,3x-5y-6=0截得的线段中点恰好是坐标原点,求直线l的方程.

32.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。

33.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。

34.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

35.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

五、解答题(10题)36.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点.(1)求圆C的方程;(2)过点M(-2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.

37.

38.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

39.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.

40.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在的平面,且PA=AB=10,设点C为⊙O上异于A,B的任意一点.(1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.

41.李经理按照市场价格10元/千克在本市收购了2000千克香菇存放人冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售?(提示:利润=销售总金额一收购成本一各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

42.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.

43.

44.如图,一辆汽车在一条水平的公路上向正西行驶,在A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD。

45.已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当直线l过圆心C时,求直线l的方程;(2)当直线l的倾斜角为45°时,求弦AB的长.

六、单选题(0题)46.“对任意X∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0

B.对任意x∈R,都有x2<0

C.存在x0∈R,使得x02≥0

D.不存在x∈R,使得x2<0

参考答案

1.C等差数列的定义.a1+a7=a32d+a3+4d=2a3+2d,2a3+2d=-2,d=-3.

2.A

3.B由题可知,3-x2大于0,所以定义域为(-3,3)

4.D程序框图的运算.因x=-5,不满足>0,所以在第一个判断框中

5.D

6.D本题考查几何概型概率的计算。阴影部分的面积为圆面的一半,由几何概型可知P=1/2。

7.D由题可知,直线2x-y+7=0到圆(x-b)2+(y-b)2=20的距离等于半径,所以二者相切。

8.B

9.C函数值的计算f(1)=1-1+1=1.

10.D

11.

12.-3或7,

13.

,由于是等比数列,所以a4=q2a2,得q=。

14.16.将实际问题求最值的问题转化为二次函数在某个区间上的最值问题.设矩形的长为xm,则宽为:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.

15.

。a-b=(2,1),所以|a-b|=

16.12.等差数列的性质.根据等差数列的性质有2a8=a4+a12,a12=2a8-a4=12.

17.λ=1,μ=4

18.2/5

19.

20.(x-2)2+(y+3)2=5圆的方程.圆心在AB中垂线y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圆C的方程为(x-2)2+(y+3)2=5

21.

22.

23.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

24.

25.

26.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得

27.

28.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离

29.

30.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点

31.

32.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=

PD=PC=2

33.

∵μ//v∴(2x+1.4)=(2-x,3)得

34.

35.

36.(1)由题意,设圆心坐标为(a,a),则(a,-1)2+(a-6)2=(a-4)2+(a-5)2=25,a=1;所以圆C的方程(x-1)2+(y-1)2=25.

37.

38.

∴PD//平面ACE.

39.

40.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB为⊙O的直径,C为⊙O上异于A、B的-点,AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(2)由(1)知△ABC为直角三角形且∠ACB=90°,又AC=6,AB=10,∴又∵PA=10,PA⊥AC,∴S△PAC=1/2PA.AC=1/2×10×6=30.∴VC-PAB=1/3×SPAC×BC=1/3×30×8=80

41.(1)由题意,y与x之间的函数关系式为y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110).(2)由题(-3x2+940x+20000)-(10×2000+340x)=22500;化简得,x2-200x+7500=0;解得x1=50,x2=150(不合题意,舍去);因此,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论