




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年安徽省滁州市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.在△ABC中,角A,B,C所对边为a,b,c,“A>B”是a>b的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件
2.己知,则这样的集合P有()个数A.3B.2C.4D.5
3.设m>n>1且0<a<1,则下列不等式成立的是()A.
B.
C.
D.
4.椭圆x2/16+y2/9的焦点坐标为()A.(,0)(-,0)
B.(4,0)(-4,0)
C.(3,0)(-3,0)
D.(7,0)(-7,0)
5.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}
6.A.0
B.C.1
D.-1
7.A.N为空集
B.C.D.
8.顶点坐标为(-2,-3),焦点为F(-4,3)的抛物线方程是()A.(y-3)2=-4(x+2)
B.(y+3)2=4(x+2)
C.(y-3)2=-8(x+2)
D.(y+3)2=-8(x+2)
9.A.1B.2C.3D.4
10.已知椭圆x2/25+y2/m2=1(m<0)的右焦点为F1(4,0),则m=()A.-4B.-9C.-3D.-5
二、填空题(10题)11.等比数列中,a2=3,a6=6,则a4=_____.
12.到x轴的距离等于3的点的轨迹方程是_____.
13.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,一2),则圆C的方程为___________.
14.按如图所示的流程图运算,则输出的S=_____.
15.已知i为虚数单位,则|3+2i|=______.
16.
17.log216+cosπ+271/3=
。
18.已知函数则f(f⑶)=_____.
19.如图是一个算法流程图,则输出S的值是____.
20.
三、计算题(5题)21.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
22.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
23.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
24.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
25.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
四、简答题(10题)26.化简
27.证明上是增函数
28.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值
29.一条直线l被两条直线:4x+y+6=0,3x-5y-6=0截得的线段中点恰好是坐标原点,求直线l的方程.
30.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
31.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积
32.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
33.某篮球运动员进行投篮测验,每次投中的概率是0.9,假设每次投篮之间没有影响(1)求该运动员投篮三次都投中的概率(2)求该运动员投篮三次至少一次投中的概率
34.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长
35.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值
五、解答题(10题)36.证明上是增函数
37.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1
38.
39.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的两焦点分别F1,F2点P在椭圆C上,且∠PF2F1=90°,|PF1|=6,|PF2|=2.(1)求椭圆C的方程;(2)是否存在直线L与椭圆C相交于A、B两点,且使线段AB的中点恰为圆M:x2+y2+4x-2y=0的圆心,如果存在,求直线l的方程;如果不存在,请说明理由.
40.
41.
42.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样
43.若x∈(0,1),求证:log3X3<log3X<X3.
44.
45.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(1)求a,b的值;(2)若对于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.</c
六、单选题(0题)46.若事件A与事件ā互为对立事件,则P(A)+P(ā)等于()A.1/4B.1/3C.1/2D.1
参考答案
1.C正弦定理的应用,充要条件的判断.大边对大角,大角也就对应大边.
2.C
3.A同底时,当底数大于0小于1时,减函数;当底数大于1时,增函数,底数越大值越大。
4.A椭圆的定义c2=a2-b2=7,所以c=,所以焦点坐标为(,0)(-,0).
5.B集合的运算.由A={1,3,5,7},B={x|2≤x≤5},得A∩B={3,5}
6.D
7.D
8.C四个选项中,只有C的顶点坐标为(-2,3),焦点为(-4,3)。
9.C
10.C椭圆的定义.由题意知25-m2=16,解得m2=9,又m<0,所以m=-3.
11.
,由等比数列性质可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.
12.y=±3,点到x轴的距离就是其纵坐标,因此轨迹方程为y=±3。
13.(x-2)2+(y+3)2=5圆的方程.圆心在AB中垂线y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圆C的方程为(x-2)2+(y+3)2=5
14.20流程图的运算.由题意可知第一次a=5,s=1,满足a≥4,S=1×5=5,a=a-1=4,当a=4时满足a≥4,输出S=20.综上所述,答案20.
15.
复数模的计算.|3+2i|=
16.2/5
17.66。log216+cosπ+271/3=4+(-1)+3=6。
18.2e-3.函数值的计算.由题意得,f(3)=㏒3(9-6)=1,所以f(f(3))=f⑴=2e-3.
19.25程序框图的运算.经过第一次循环得到的结果为S=1,n=3,过第二次循环得到的结果为S=4,72=5,经过第三次循环得到的结果为S=9,n=7,经过第四次循环得到的结果为s=16,n=9经过第五次循环得到的结果为s=25,n=11,此时不满足判断框中的条件输出s的值为25.故答案为25.
20.33
21.
22.
23.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
24.
25.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
26.
27.证明:任取且x1<x2∴即∴在是增函数
28.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得
29.
30.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
31.
32.
33.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 统计学公式应用技巧试题及答案
- 食品质检员日常工作技能要求试题及答案
- 商业分析师选拔试题及答案
- 2025个体餐馆雇佣合同范本
- 2025《管道铺设合同》
- 2025企业员工宿舍租赁合同
- 残疾人服务知识与技巧
- 2025企业员工竞业禁止合同
- 2025 与护工签订的合同范本
- 体育产业未来趋势与市场潜力深度解析
- 华北电力大学丁肇豪:多主体数据中心算力-电力跨域协同优化
- 科技公司费用报销制度及流程比较
- 2024年绍兴诸暨市水务集团有限公司招聘考试真题
- 2025年新版供电营业规则考试题库
- 2025年长白山职业技术学院单招职业技能测试题库带答案
- 2025年公务员遴选考试公共基础知识必考题库170题及答案(四)
- 2024年内蒙古呼和浩特市中考物理试题【含答案、解析】
- 办公用品及设备采购产品手册
- DL-T-1878-2018燃煤电厂储煤场盘点导则
- 《扣件式钢管脚手架安全技术规范》JGJ130-2023
- 超星尔雅学习通《时间管理》章节测试含答案
评论
0/150
提交评论