2022-2023学年河南省南阳市普通高校对口单招数学自考真题(含答案)_第1页
2022-2023学年河南省南阳市普通高校对口单招数学自考真题(含答案)_第2页
2022-2023学年河南省南阳市普通高校对口单招数学自考真题(含答案)_第3页
2022-2023学年河南省南阳市普通高校对口单招数学自考真题(含答案)_第4页
2022-2023学年河南省南阳市普通高校对口单招数学自考真题(含答案)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年河南省南阳市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.已知向量a=(sinθ,-2),6=(1,cosθ),且a⊥b,则tanθ的值为()A.2B.-2C.1/2D.-1/2

2.若f(x)=logax(a>0且a≠1)的图像与g(x)=logbx(b>0,b≠1)的关于x轴对称,则下列正确的是()A.a>bB.a=bC.a<bD.AB=1

3.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数小于十位数的共有()A.210B.360C.464D.600

4.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)

5.已知向量a=(1,k),b=(2,2),且a+b与a共线,那么a×b的值为()A.1B.2C.3D.4

6.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定

7.执行如图所示的程序,若输人的实数x=4,则输出结果为()A.4B.3C.2D.1/4

8.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6

9.下列立体几何中关于线面的四个命题正确的有()(1)垂直与同一平面的两个平面平行(2)若异面直线a,b不垂直,则过a的任何一个平面与b都不垂直(3)垂直与同一平面的两条直线一定平行(4)垂直于同一直线两个平面一定平行A.1个B.2个C.3个D.4个

10.A.B.C.D.

二、填空题(10题)11.设等差数列{an}的前n项和为Sn,若S8=32,则a2+2a5十a6=_______.

12.在△ABC中,C=60°,AB=,BC=,那么A=____.

13.

14.的展开式中,x6的系数是_____.

15.

16.

17.

18.

19.甲,乙两人向一目标射击一次,若甲击中的概率是0.6,乙的概率是0.9,则两人都击中的概率是_____.

20.在:Rt△ABC中,已知C=90°,c=,b=,则B=_____.

三、计算题(5题)21.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

22.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

23.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

24.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

25.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

四、简答题(10题)26.解不等式组

27.求经过点P(2,-3)且横纵截距相等的直线方程

28.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。

29.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长

30.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

31.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值

32.证明:函数是奇函数

33.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.

34.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn

35.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

五、解答题(10题)36.

37.

38.已知函数(1)f(π/6)的值;(2)求函数f(x)的最小正周期和单调递增区间.

39.已知数列{an}是公差不为0的等差数列a1=2,且a2,a3,a4+1成等比数列.(1)求数列{an}的通项公式;(2)设bn=2/n(an+2),求数列{bn}的前n项和Sn.

40.

41.已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为,右焦点为(,0),斜率为1的直线L与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(1)求椭圆G的方程;(2)求△PAB的面积.

42.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点.(1)求圆C的方程;(2)过点M(-2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.

43.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1

44.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列{Sn+5/4}是等比数列

45.

六、单选题(0题)46.若不等式|ax+2|<6的解集是{x|-1<x<2},则实数a等于()A.8B.2C.-4D.-8

参考答案

1.A平面向量的线性运算∵a⊥b,∴b=sinθ-2cosθ=0,∴tanθ=2.

2.D

3.B

4.C函数的定义.x+1>0所以.x>-1.

5.D平面向量的线性运算∵向量a=(1,k),b=(2,2),∴a+b=(3,k+2),又a+b与a共线.∴(k+2)-3k=0,解得k=1,∴A×b=(1,1).(2,2)=1×2+1×2=4,

6.B已知函数是指数函数,当a在(0,1)范围内时函数单调递减,所以选B。

7.C三角函数的运算∵x=4>1,∴y=㏒24=2

8.D设公比等于q,则由题意可得,,解得,或。当时,,当时,,所以结果为。

9.B垂直于同一平面的两个平面不一定平行;垂直于一平面的直线与该平面内的所有直线垂直;垂直于同一平面的两条直线不一定平行也可能共线;垂直于同一直线的两个平面平行。

10.A

11.16.等差数列的性质.由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.

12.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由题知BC<AB,得A<C,所以A=45°.

13.33

14.1890,

15.5

16.-1

17.5n-10

18.0

19.0.54,由于甲击中的事件和乙击中的事件互相独立,因此可得甲乙同时击中的概率为P=0.6*0.9=0.54.

20.45°,由题可知,因此B=45°。

21.

22.

23.

24.

25.

26.x2-6x+8>0,∴x>4,x<2(1)(2)联系(1)(2)得不等式组的解集为

27.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为

28.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

29.

30.

31.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得

32.证明:∵∴则,此函数为奇函数

33.∵(1)这条弦与抛物线两交点

34.

35.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

36.

37.

38.

39.(1)设数列{an}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2=(2+d).(3+3d),解得d=2,或d=-1,当d=-1时a3=0与a2,a3,a4+1成等比数列矛盾,舍去.所以d=2,所以an=a1+(n-1)d=2+2(n-1)=2n即数列{an}的通项公式an=2n.

40.

41.

42.(1)由题意,设圆心坐标为(a,a),则(a,-1)2+(a-6)2=(a-4)2+(a-5)2=25,a=1;所以圆C的方程(x-1)2+(y-1)2=25.

43.(1)如图,连接BD,在正方体AC1中,对角线BD//B1D1.又因为,E,F分别为棱AD,AB的中点,所以EF//BD,所以EF//B1D1,又因为B1D1包含于平面CB1D1,所以EF//平面CB1D1.

44.(1)设成等差数列的三个正数分别为a-d,a,a+d依题意,得a-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论