




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
斜线在平面上的射影第一页,共十页,2022年,8月28日3.教学疑点及解决方法:(1)“斜线在平面上的射影”是“直线和平面所成的角”的基础;“斜线在平面上的射影”这一小节出现概念较多,为了便于学生理解和记忆,可以边画出课本的图形1-30边讲解,结合图形记忆,快而且准.教学中,一般先画出斜线AC与平面α斜交于C,再过AC上一点A引AB⊥α,垂足为点B,连结BC,然后指出AC是平面α上的斜线;线段AC是点A到平面α的斜线段,线段AB是点A到平面α的垂线段,点B是点A到平面α的垂线的垂足,直线BC是线段AC在平面α上的射影.(2)斜线段在平面上的射影是一条线段,斜线在平面上的射影是直线,垂线和垂线段在平面上的射影退化成一个点.(3)为照顾一般习惯说法,课本中定义射影是用“在平面上”,而说点、直线“在平面内”,并非不同.(4)射影定理中三个结论成立的前提是这些斜线段及垂线段必须是从平面外同一点向平面所引而得到的,否则,结论不成立.第二页,共十页,2022年,8月28日(5)直线和平面相交,它们的相互位置与两条相交直线一样,仍需用角来表示,但过交点在平面内可以作许多条直线,与平面相交的直线同平面内每一条直线所成的角是不相等的,为了定义的准确性,所以取这些角中有确定值的最小角,也就是取该斜线与其在平面上射影所成的锐角作为直线和平面所成的角;(6)直线和平面的位置关系可以用直线和平面成角范围来刻划;反之,由直线和平面所成角的大小也可以确定直线和平面的相互位置:②直线和平面平行或直线在平面内,θ=0°.③直线和平面成角的范围是0°≤θ≤90°.三、课时安排1课时.第三页,共十页,2022年,8月28日四、学生活动设计常规活动.(略)五、教学步骤(一)新课概念教学1.点在平面上的射影,点到平面的垂线段自一点向平面引垂线,垂足叫做这点在这个平面上的射影.这点与垂足间的线段叫这点到这个平面的垂线段.2.平面的斜线的有关概念一条直线和一个平面相交,但不和这个平面垂直,这条直线叫这个平面的斜线,斜线和平面的交点叫斜足,斜线上一点和斜足间的线段叫这点到这个平面的斜线段.3.射影的有关概念过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫斜线在这个平面上的射影.垂足和斜足间的线段叫这点到平面的斜线段在这个平面上的射影.第四页,共十页,2022年,8月28日说明:教师边画出课本图形1-30,边讲解.点B—点A在平面上的射影AB—点A到平面的垂线段AC—平面的一条斜线C—斜足线段AC—斜线段直线BC—斜线AC在平面上的射影线段BC—斜线段AC在平面上的射影(板书)(1).点在平面上的射影.(2).点到平面的垂线段.(3).斜线、斜足、斜线段.(4).斜线在平面上的射影.(5).线段在平面上的射影.第五页,共十页,2022年,8月28日(二)射影定理从平面外一点向这个平面所引的垂线段和斜线段中,(1)射影相等的两条斜线段相等,射影较长的斜线段也较长;(2)相等的斜线段的射影相等,较长的斜线段的射影也较长;(3)垂线段比任何一条斜线段都短.关于射影定理说明如下:设A为平面α外一点,AO⊥α,AB、AC为任意两条斜线,O为垂足,则OB和OC分别是AB和AC的射影.则AB和AC分别为Rt△ABO和Rt△ACO的斜边;由勾股定理可知AB2=AO2+OB2;AC2=AO2+OC2;比较上面两个等式,得还可以得到AB>AO,AC>AO.所以,AO过点A向平面α所引线段中最短的一条.第六页,共十页,2022年,8月28日(三)直线与平面成角1.定义:(1)平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和平面所成的角.(2)直线和平面垂直——直线与平面所成的角是直角.(3)直线和平面平行或直线在平面内——直线与平面所成的角是0°度的角.2.按照定义,在求直线和平面所成的角时,应按下述三种情况依次进行考虑:(1)直线和平面平行或直线在平面内时,直线和平面所成的角是0°角;(2)直线和平面垂直时,直线和平面所成的角是直角;(3)直线和平面斜交时,直线和平面所在的角是指直线和它在平面内的射影所成的锐角.3.斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角.(让学生看书3分钟,加以理解)第七页,共十页,2022年,8月28日(四)例题分析1.如图1-82,在正方体ABCD-A1B1C1D1中,E、F分别是AA1、A1D1的中点,求:(1)D1B1与面AC所成角的余弦值;(2)EF与面A1C1所成的角;(3)EF与面AC所成的角.第八页,共十页,2022年,8月28日2.如图1-83,Rt△ABC的斜边AB在平面M内,AC和BC与M所成的角分别是30°、45°,CD是斜边AB上的高,求CD与M所成的角.第九页,共十页,2022年,8月28日(五)归纳小结这节课,我们学习了有关平面的斜线、射影和直线与平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同样本 食品配送合同
- 能源产品销售合同
- 公司提前解除劳动合同补偿协议范本
- 简单承包合同范文
- 14我要的是葫芦(教学设计)-2024-2025学年语文二年级上册统编版
- 4《少让父母为我操心》第二课时(教学设计)-部编版道德与法治四年级上册
- 6-1《芣苢》教学设计 2024-2025学年统编版高中语文必修上册
- 审计设备合同范本
- 教师资格证小学《教育教学知识与能力》基础试题
- Module 4 Unit 2 He doesnt like these trousers.(教学设计)-2024-2025学年外研版(一起)英语二年级上册
- 2023年银行安全保卫考试真题模拟汇编(共392题)
- DB34T 4627-2023 人民防空工程防护质量检测技术规程
- 2024年农商银行笔试真题
- T-CSPSTC 110-2022 水工混凝土墩墙裂缝防治技术规程
- 2024高考语文一轮复习:文学类文本阅读-小说的社会环境
- 陕西省西安市2024年中考英语模拟试卷(含答案)
- 四川省成都市金堂县2023-2024学年八年级下学期期末考试语文试题
- 大学生创新创业基础教程(各类院校创新创业课程)全套教学课件
- 《民用无人驾驶航空器系统分类及分级》考试题库(含答案)
- Y -S-T 1700-2024 银矿采选业绿色工厂评价要求(正式版)
- 中职语文高教版(2023-2024)基础模块上册二《风景谈》公开课一等奖创新教学设计
评论
0/150
提交评论