




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年福建省三明市普通高校对口单招高等数学一自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.
2.
3.下列命题不正确的是()。
A.两个无穷大量之和仍为无穷大量
B.上万个无穷小量之和仍为无穷小量
C.两个无穷大量之积仍为无穷大量
D.两个有界变量之和仍为有界变量
4.
5.设函数f(x)在[a,b]上连续,则曲线y=f(x)与直线x=a,x=b,y=0所围成的平面图形的面积等于()。A.
B.
C.
D.
6.设在点x=1处连续,则a等于()。A.-1B.0C.1D.2
7.A.A.
B.
C.
D.
8.
9.过曲线y=xlnx上M0点的切线平行于直线y=2x,则切点M0的坐标是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)
10.为二次积分为()。A.
B.
C.
D.
11.平面x+y一3z+1=0与平面2x+y+z=0相互关系是()。
A.斜交B.垂直C.平行D.重合
12.
13.A.e
B.e-1
C.-e-1
D.-e
14.
15.
A.
B.
C.
D.
16.曲线y=x2+5x+4在点(-1,0)处切线的斜率为()A.A.2B.-2C.3D.-3
17.设y=3+sinx,则y=()A.-cosxB.cosxC.1-cosxD.1+cosx
18.
19.
A.
B.
C.
D.
20.
二、填空题(20题)21.方程cosxsinydx+sinxcosydy=0的通解为___________.
22.
23.若f'(x0)=1,f(x0)=0,则
24.
25.曲线y=x3-3x2-x的拐点坐标为____。
26.过坐标原点且与平面3x-7y+5z-12=0平行的平面方程为_________.
27.
28.
29.
30.设y=f(x)可导,点xo=2为f(x)的极小值点,且f(2)=3.则曲线y=f(x)在点(2,3)处的切线方程为__________.
31.设z=2x+y2,则dz=______。
32.
33.
34.设z=sin(x2y),则=________。
35.
36.
37.
38.
39.
二阶常系数线性微分方程y-4y+4y=0的通解为__________.
40.
三、计算题(20题)41.将f(x)=e-2X展开为x的幂级数.
42.求曲线在点(1,3)处的切线方程.
43.
44.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
45.求微分方程的通解.
46.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.
47.求函数f(x)=x3-3x+1的单调区间和极值.
48.证明:
49.当x一0时f(x)与sin2x是等价无穷小量,则
50.
51.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
52.求微分方程y"-4y'+4y=e-2x的通解.
53.
54.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.
55.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
56.
57.
58.
59.
60.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
四、解答题(10题)61.
62.求fe-2xdx。
63.计算
64.
65.设有一圆形薄片x2+y2≤α2,在其上一点M(x,y)的面密度与点M到点(0,0)的距离成正比,求分布在此薄片上的物质的质量。
66.
67.计算
68.
69.
70.设y=x2ex,求y'。
五、高等数学(0题)71.设f(x)在x=a某邻域内连续且f(a)为极大值,则存在δ>0,当x∈(a一δ,a+δ)时,必有()。A.(x—a)[f(x)一f(a)]≥0
B.(x—a)[f(x)一f(a)]≤0
C.
D.
六、解答题(0题)72.
参考答案
1.B
2.D
3.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是无穷大。
4.D
5.C
6.C本题考查的知识点为函数连续性的概念。
由于y为分段函数,x=1为其分段点。在x=1的两侧f(x)的表达式不同。因此讨论y=f(x)在x=1处的连续性应该利用左连续与右连续的概念。由于
当x=1为y=f(x)的连续点时,应有存在,从而有,即
a+1=2。
可得:a=1,因此选C。
7.D
8.A
9.D本题考查的知识点为导数的几何意义.
由导数的几何意义可知,若y=f(x)在点x0处可导,则曲线y=f(x)在点(x0,f(x0))处必定存在切线,且切线的斜率为f'(x0).
由于y=xlnx,可知
y'=1+lnx,
切线与已知直线y=2x平行,直线的斜率k1=2,可知切线的斜率k=k1=2,从而有
1+lnx0=2,
可解得x0=e,从而知
y0=x0lnx0=elne=e.
故切点M0的坐标为(e,e),可知应选D.
10.A本题考查的知识点为将二重积分化为极坐标系下的二次积分。由于在极坐标系下积分区域D可以表示为
故知应选A。
11.Bπ1x+y一3z+1=0的法向量n1=(1,1,一3)π2:2x+y+z=0的法向量n2=(2,1,1)∵n1.n2=(1,1,一3).(2,1,1)=0∵n1⊥n2;∴π1⊥π2
12.C
13.B所给极限为重要极限公式形式.可知.故选B.
14.C解析:
15.B本题考查的知识点为交换二次积分次序。由所给二次积分可知积分区域D可以表示为1≤y≤2,y≤x≤2,交换积分次序后,D可以表示为1≤x≤2,1≤y≤x,故应选B。
16.C点(-1,0)在曲线y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由导数的几何意义可知,曲线y=x2+5x+4在点(-1,0)处切线的斜率为3,所以选C.
17.B
18.D
19.D本题考查的知识点为导数运算.
因此选D.
20.A
21.sinx·siny=Csinx·siny=C本题考查了可分离变量微分方程的通解的知识点.
由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=-0,即d(sinx·siny)=0,两边积分得sinx·siny=C,这就是方程的通解.
22.
23.-1
24.
本题考查的知识点为直线的方程和直线与直线的关系.
由于两条直线平行的充分必要条件为它们的方向向量平行,因此可取所求直线的方向向量为(2,1,-1).由直线的点向式方程可知所求直线方程为
25.(1,-1)
26.3x-7y+5z=0本题考查了平面方程的知识点。已知所求平面与3x-7y+5z-12=0平行,则其法向量为(3,-7,5),故所求方程为3(x-0)+(-7)(y-0)+5(z-0)=0,即3x-7y+5z=0.
27.
28.x—arctanx+C.
本题考查的知识点为不定积分的运算.
29.-exsiny
30.
31.2dx+2ydy
32.
33.
34.设u=x2y,则z=sinu,因此=cosu.x2=x2cos(x2y)。
35.x=-3
36.
37.tanθ-cotθ+C
38.ln(1+x)+C本题考查的知识点为换元积分法.
39.
40.
41.
42.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
43.由一阶线性微分方程通解公式有
44.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
45.
46.由二重积分物理意义知
47.函数的定义域为
注意
48.
49.由等价无穷小量的定义可知
50.
51.
52.解:原方程对应的齐次方程为y"-4y'+4y=0,
53.
54.
列表:
说明
55.
56.
57.
58.
59.
则
60.
61.
62.
63.
本题考查的知识点为定积分的换元积分法.
比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西华澳商贸职业学院《临床检验仪器》2023-2024学年第二学期期末试卷
- 济南护理职业学院《嵌入式课程设计》2023-2024学年第二学期期末试卷
- 临床免疫学检验课件 第3章 免疫原和抗血清的制备学习资料
- 西安海棠职业学院《隶书》2023-2024学年第一学期期末试卷
- 江苏农牧科技职业学院《硬笔书法》2023-2024学年第一学期期末试卷
- 盐城工业职业技术学院《工商管理级学硕》2023-2024学年第二学期期末试卷
- 二零二五版资金监管委托协议样本
- 二零二五全新美食城档口出租协议
- 二零二五版学生托人接送免责协议书范文
- 游戏开发回顾与展望
- 《旅游策划实务》课件-《秦岭北望 千古》长安西安五天四晚亲子家庭定制游方案
- 事故隐患内部报告奖励制度1
- 建设单位保证安全生产措施方案
- 2025年新音乐节明星艺人歌手演出场费报价单
- 2025年人保应聘考试试题及答案
- 新视野大学英语(第四版)读写教程2(思政智慧版) 教案 Unit 5 Striving for financial health
- 幼儿园获奖公开课:大班科学活动《茶》课件
- GB/T 34571-2024轨道交通机车车辆布线规则
- 认知与实践:AI技术在高校图书馆应用现状调研分析
- 护理行政查房内容
- 沙滩车租赁合同
评论
0/150
提交评论