二次函数知识点总结及典型例题和练习极好_第1页
二次函数知识点总结及典型例题和练习极好_第2页
二次函数知识点总结及典型例题和练习极好_第3页
二次函数知识点总结及典型例题和练习极好_第4页
二次函数知识点总结及典型例题和练习极好_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二函数知识点总结及典型例题和练习(极好)知识点:二次函数概念和像1、二次函数的概念一般地,如果

yax

2

(a,b是数

0)

,特别注a不为,么y叫做x的二次函数。

y

2

(,b是常a叫做二次函数的一般式。2、二次函数的图像二次函数的图像是一条关于

对称的曲线,这条曲线叫抛物线。抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。3、二次函数图像的画法-------五作图:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴(2)求抛物线y2

坐标轴的交点:当抛物线与x轴有两个交点时,描出这两个交点及抛物线与y轴的交点再找到点C的对称点D这五个点按从左到右的顺序连接起来并上或向下延伸得到二次函数的图像。当抛物线与x轴只有一个交点或无交点时抛物线与y轴的交点C及对称点DD三点可粗略画出二次函数的草图需要画出比较精确的图像描出一对对称点A然后顺次连接五点,画出二次函数的图像。【例1】已知函数y=x,写出函数图象的顶点、图象与坐标轴的交点,以及图象与y轴的交点关于图象对称轴的对称点。然后画出函数图象的草图;求图象与坐标轴交点构成的三角形的面积:(3根据第(1)题的图象草图,说出x取哪些值时,①y=0;y<0;③y>0知识点:二次函数解析式二次函数的解析式有三种形式:(1)一般式:

yax

2

(a,c是常数

0)(2)交点式:当抛物线yax2

x轴有交点时,即对应的一元二次方程ax

有实根x和1

2

存在时,根据二次三项式的分解因式

2

bx(x,二次函数yax12

2

可转化为两根式

a(x

)

。如果没有交点,则不能这样表示。(3)顶点式:yx)(是常

0)

当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁。【例1】抛物线yaxx轴交于A(103,0)两点,且过(-1,16物线的解析式。33【例2】如图,抛物线bxx轴的一个交点A在点(,)和(-1,0)之间(包括这两点C是矩形DEFG上(包括边界和内部)的一个动点,则:abc0(>或<或=)a的取值范围是【例3】下列二次函数中,图象以直线2为称轴,且经过点(0,1)的是()A.y

=(

x

−2)2+1B.y

=(

x

+2)2+1Cy

=(

x

−2)2−3D.y

=(

x

+2)2–3知识点:二次函数最值如果自变量的取值范围是全体实数么函数在顶点处取得最大或最小值

x

b2a

时,

最值

4ac4

2

。如果自变量的取值范围是

xxx,那么,首先要看2

b2

是否在自变量取值范围x内,2若在此范围内,则当

时,最值

4ac4

2

若不在此范围内,则需要考虑函数在

xx

范围内的增减性,如果在此范围内y随x的增大而增大,则当

x时,

,当x时,

bx

;如在此范内,y随x的而减小,当

x时y

bx1

,当

x时,y

2bx

。y【例1】已知二次函数的图像(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内下列说法正确的是()

O-1

1

23

xA有最小值0,有最大值3C有最小值-1,有最大值

B.最小值-1,最大值D.有最小值-1,无最大值【例2】某宾馆有50房间供游客住宿,当每个房间的房价为每天l80元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的正整数倍).设一天订住的房间数为y,直接写出yx的函数关系式及自变量x的取值范围;设宾馆一天的利润为w元,求w与x函数关系式;一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?知识点、二次函数性质1、二次函数的性质函数

yax

二次函数bx(ac数0)图a>0

a<0b4acb4acb4ac时y(3)在对称轴的左侧,即x≤即当x≥时y有(4)抛物线有最高点,当x=像yy0x

0x(1)抛物线开口向上,并向上无限延伸;(1抛物线开口向下并向下无限延伸;(2)对称轴是x=

,a

(2)对称轴是x=

,a顶点坐标是(

,2

顶点坐标是(

,24性

(3在对称轴的左侧即当x≤

时,2随x的增大而减小;在对称轴的右侧,即y随x的增大而增大;在对称轴的右侧,质

当x≥

b时y随x的增大而增大,简记时,y随x的增大而减小,a左减右增;(4)抛物线有最低点,x=

简记左增右减;时,ya2最小值,

最小值

4ac4

2

有最大值,

最大值

4ac4

22、二次函数

y

bxb,常数

0)

中,、、c的含义:a表开口方向:a时,抛物线开口向上a时,抛物线开口向下

与对称轴有关:对称轴为x=

b2c示抛物线与y轴的交点坐标c3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x轴的交点横坐标。因此一元二次方程中的ac,二次函数中表示图像与x轴是否有交点。当时,图像与x轴有两个交点;当时,图像与x轴有一个交点;当时,图像与x轴没有交点。【例1】抛物线-3的顶点坐标是.【例2】二次函数2x有()A.最大值C最大值

B最小值D.最小值【例3】由二次函数

y

3)

1,知()A其图象的开口向下B其图象的对称轴为直线

C其最小值为1D.当x,y随x的增大而增大【例4】已知函数

(k

3)x2

2

1

的图象与x轴有交点,则k的取值范围是()A.

k

B.

k4

C.

k

k

D.

k

kx【例5】下列函数中当>0时y

值随x

值增大而减小的是(A.y

=2

By

=-1

Cy

=

x

D.y

=

1x【例6】若二次函数

yx)2x≤l时随的增大而减小的取值范围)A.mB>lC.mD.m≤l知识点、二次函数象的平①对于抛物y=ax+bx+c的平移通常先将一般式转化成顶点式

,再遵循左加右减,上下减的原则化为顶点式有两种方法:配方法点坐标公式法。在用顶点坐标公式法求出顶点坐标后写顶点式时,要减去顶点的横坐标,加上顶点的纵坐标。②ax沿y轴平移:向上(下)平移m(m>0)个单位,bx变成yaxbx

(或2

bx)③当然,对于抛物线的一般式平移时,也可以不把它化为顶点式y

2

bx

:向左(右)平移(>0)个单位,ax

成yxm)()

(或()

2

(m))【例1】将抛物线

y向左平移2个单位后,得到的抛物线的解析式是()A.

y2)

B.

Cy

D.

【例2】将抛物线y=x2-2x向上平移3个单位,再向右平移4个单位等到的抛物线是_______.【例3】抛物线y可以由抛物线下列平移过程正确的是()先向左平移2个单位再向上平移3个单位先向左平移2个单位再向下平移3个单位先向右平移2个单位再向下平移3个单位bbD.先向右平移2个单位,向上平移3个单位【补】抛物线y=2x2-3x-7在x轴截得的线段的长度为______________【公式】抛物线y=ax2+bx+c在x轴上截得的线段的长度为_____________知识点:抛物线ax

中,a、b、c的作(1决定开口方向及开口大小,这与

y

2

中的完一样.(2a共决定抛物线对称轴的位.由于抛物线yax

bx的称轴是直线

x

a

,故:时,对称轴为y轴;②即a号)时,对称轴在y轴左;③即号)时,对称轴在轴右侧.口诀---左同,右异(b同号,对称轴在y轴左侧)(3大小决定抛物线ax2

y轴交点的位置当x时,∴抛物线y2

与有且只有一个交点(,c①抛物线经过原点;②c,与y轴交于正半轴;③与交于负半轴.以上三点中,当结论和条件互换时,仍成立如抛物线的对称轴在右侧,则0.【例1】如图为抛物线y2图像为抛物线与坐标轴的交点==1则下列关系中正确的是()Aab=-1B.ab=1C.b<2aD.ac<0【例2】已知抛物线=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示下列结论中正确的是()Aa>0B.b<0C.c<0Dab+c>0【例3】如图所示的二次函数y2bx的图象中,刘星同学观察得出了下面四条信息..22,所以的中..22,所以的中点坐标为bac>12-<0++<0你认为其中错误的有)A.2个B3个C4个D.1个【例4】如图次函数2+bx+c的象与y轴正半轴相交顶点坐标为

列结论:①ac<②a+b=0③4ac-b2=4a④<其中正确的个数()A.1B.2C.3D.4【例5】如图二次函数yax2+bx≠0图象的一部分出下列命题a+b+c=0②b>2a2+bx+c=0的根分别为-3和10正确的命题是要求填写正确命题的序号)【例6】如图,平面直角坐标系中,两条抛物线有相同的对轴,则下列关系正确的是()A.=,>hC>=h

B=n<hD.<,=h知识点:中考二次数压轴中常用到的式1、两点间距离公式:如图:点A坐标为(x,y坐标为(x,y112AB间的距离线段AB的长度为x(这实际上是根1据勾股定理得来的)2标公式平面直角坐标系中B两点的坐标分别为(,)

Py1

A

Px1

x2

1(x,),中的坐标(,y)

.由

x,得x

x

,同理

y

yyx(,)2

.3、两平行直线的解析式分别为:x+b,y=kx+b,那么k=k,也就是说当我们知道一条直线112212的k值,就一定能知道与它平行的另一条直线的k值。4、两垂直直线的解析式分别为y=kx+b,y=kx+b,那么k×k=-1,也就是说当我们知道一条11221直线的k值,就一定能知道与它垂直的另一条直线的k值这一条,只要能灵活运用就行,2222不需要解)以上四条,我称它们为坐标系中的“四大金刚”【例1如图,在平面直角坐标系中,抛物线y=﹣与x轴交于A.B两点,与y交于点C,点是该抛物线的顶点.求直线AC的解析式及B.D两点的坐标;点x轴上一个动点,P直线l∥交抛物线于点Q,试探究:随的运动,在抛物线上是否存在点,使以点A.Q为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q坐标;若不存在,请说明理由.请在直线AC上找一点M使△BDM周长最小,求出M点的坐标.【例2如图,已知抛物线y=﹣x与一直线相交于A(﹣1,0C(2,3)两点,与轴交于点N.其顶点为D1求抛物线及直线AC的函数关系式;设点M(3,m使MN+MD的值最小时的值;若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点作EF∥BD交抛物线于点F,B,DEF为顶点的四边形能否为平行四边形?若能,求的坐标;若不能,请说明理由;若抛物线上位于直线AC方的一个动点,求△APC的面积的最大值.33【例3】如图,抛物线x2x与x轴交于A,两点(点B在点A的右边y轴交2于C连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0P作轴的垂线l交抛物线于点Q。求点A、B、的坐标;当点P在线段OB上运动时,直线l分别交BDBC于点M、N试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由。当点P在段EB上运动时,是否存在点Q,使BDQ为直角三角形,若存在,请直接写出Q点坐标;若不存在,请说明理由。DE

A

O

BCD

DE

A

O

BEA

O

BCC【练习】1、平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4m面均为1m丙别站在距甲拿绳的手水平距离1m、2.m处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5,则学生丁的身高为(建立的平面直角坐标系如右图所示)()A1.5mB..625mC1.66mD1.67m2、已知函数

,则使y=k立的x值恰好有三个,则k的值为()A.0B.C2D.33.二次函数2图象如图所示,则反比例函数y系中的大致图象是().

x

与一次函数bx同一坐标4.如图知二次函数

ybx

的图象经过-1增大而增大时,

的取值范围是.-1

y2bx(1,25.在平面直角坐标系中抛物线

yx

2

绕着它与y

轴的交点旋转180°得抛物线的解析式是(A.

y2

ByC

y2

D.y2

6.已知二次函数ax2的像如图对称轴下列结果①24②③a④⑤,正确的结论是()

……

-20

-14

06

16

24

……A①②③④B②④⑤C②③④D①④⑤7.抛物线y上分点的横坐标x纵坐标对应值如上表:从上表可知,下列说法中正确的是序号)①抛物线与x轴一个交点为(3,0②函数

yax

2

的最大值为6③抛物线的对称轴是

x

;④在对称轴左侧,yx

增大而增大.8.如图,在平面直角坐标系中,是标原点,点A坐标是(-2,4A⊥轴,垂足为,连结.(1)求△OAB的面积;(2)抛物线

yx

经过点.①求c

的值;②将抛物线向下平移m单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△B的边界m的值范围(直接写出答案即可9、已知函数y2的象经过点A(,-2

),这个二次函数图象的对称轴是x=3”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。根据已知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论