2022年安徽省初三中考数学真题试卷(含详解)_第1页
2022年安徽省初三中考数学真题试卷(含详解)_第2页
2022年安徽省初三中考数学真题试卷(含详解)_第3页
2022年安徽省初三中考数学真题试卷(含详解)_第4页
2022年安徽省初三中考数学真题试卷(含详解)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年安徽省初中学业水平考试

数学(试题卷)

一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C.。四个

选项,其中只有一个是符合题目要求的.

1.下列为负数的是()

A.|-2|B.V3C.0D.-5

2.据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()

A.3.4xlO8B.0.34xl08C.3.4xl07D.34xl06

4.下列各式中,计算结果等于/的是()

3b362

A.a+aB.a-aC.a'°-aD.a'^a

5.甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是)

D.T

6.两个矩形的位置如图所示,若Nl=a,则N2=()

2

A.a—90°B.a-45°C.180°-aD.2700-e

7.已知。。的半径为7,AB是G)。的弦,点尸在弦AB上.若孙=4,PB=6,则OP=()

A.714B.4C.V23D.5

8.随着信息化发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由

三个小正方形组成的“"进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小

正方形和一个白色小正方形的概率为()

A.-B.-C.1D.-

3823

9.在同一平面直角坐标系中,一次函数/二胡+标与y=/x+a的图像可能是()

10.已知点。是边长为6等边△ABC的中心,点尸在△ABC外,AABC,AMB,△PBC,△PC4的面

积分别记为50,S-邑,S,.若S1+S2+S3=2S0,则线段OP长的最小值是()

A-B.述C.3A/3D.迪

222

二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式解集为

2

12.若一元二次方程2V—4x+m=0有两个相等的实数根,则〃?=.

13.如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数

y,的图象经过点C,丁=一仕70)的图象经过点艮若OC=AC,则心.

九X

角顶点的等腰直角三角形,EF,8F分别交8于点M,N,过点F作A。的垂线交AO的延长线于点

G.连接。F,请完成下列问题:

(1)ZFDG='

(2)若。£=1,DF=272-WJMN=

三、(本大题共2小题,每小题8分,满分16分)

(2)以边AC的中点。为旋转中心,将△ABC按逆时针方向旋转180°,得到请画出

△A242G.

四、(本大题共2小题,每小题8分,满分16分)

17.某地区2020年进出口总额为520亿元.2021年进出口总额比2020年有所增加,其中进口额增加了

25%,出口额增加了30%.注:进出口总额=进口额+出口额.

(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:

年份进口额/亿元出口额/亿元进出口总额/亿元

2020Xy520

2021\.25x1.3y

(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额度分别是多少亿元?

18.观察以下等式:

第1个等式:(2xl+l)2=(2X2+1)2-(2X2)2,

第2个等式:(2X2+1)2=(3X4+1)2-(3X4)2,

第3个等式:(2X3+1)2=(4X6+1)2-(4X6)\

第4个等式:(2x4+iy=(5x8+iy-(5x8)2,

……按照以上规律.解决下列问题:

(1)写出第5个等式::

(2)写出你猜想的第〃个等式(用含〃的式子表示),并证明.

五、(本大题共2小题,每小题10分,满分20分)

19.已知4B为。。的直径,C为。。上一点,。为84的延长线上一点,连接CD

(1)如图1,若ND

(2)如图2,若。C与。。相切,E为。4上一点,且NAC£>=/ACE,求证:CE±AB.

20.如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在

C的北偏东37°方向上,沿正东方向行走90米至观测点O,测得A在。的正北方向,B在。的北偏西

53°方向上.求A,B两点间的距离.参考数据:sin37°®0.60,cos37°«0.80,Um37°«0.75.

六、(本题满分12分)

21.第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生.为了解这两个

年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n名学生进行冬奥会知识测试,将测试成

绩按以下六组进行整理(得分用x表示):A:70<x<75,B-.75<x<80,C:80<x<85,

D:85<x<90,E:90<x<95,F:95<x<100,

并绘制七年级测试成绩频数直方图和八年级测试成绩扇形统计图,部分信息如下:

已知八年级测试

七年级测试成绩频数直方图八年级测试成绩扇形统计图

成绩。组的全部数据如下:86,85,87,86,85,89,88

请根据以上信息,完成下列问题:

(1)n=,a—;

(2)八年级测试成绩的中位数是;

(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会

关注程度高的学生一共有多少人,并说明理由.

七、(本题满分12分)

22.已知四边形ABCD中,BC=CD.连接B。,过点C作B。的垂线交AB于点E,连接。E.

(1)如图1,若OE〃8C,求证:四边形BCQE

是菱形;

(2)如图2,连接AC,设BD,4c相交于点尸,OE垂直平分线段AC.

(i)求/CED的大小;

(ii)若AF=AE,求证:BE=CF.

八、(本题满分14分)

23.如图1,隧道截面由抛物线的一部分AEO和矩形A8C。构成,矩形的一边BC为12米,另一边A8为

2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xQy,规定一个单位

长度代表1米.E(0,8)是抛物线的顶点.

(1)求此抛物

图3《方案二)

线对应的函数表达式;

(2)在隧道截面内(含边界)修建“rn”型或“n”型栅栏,如图2、图3中粗线段所示,点耳,

巴在x轴上,MN与矩形勺巴的一边平行且相等.栅栏总长/为图中粗线段[A,P2P),P,P4,MN长

度之和.请解决以下问题:

(i)修建一个“E”型栅栏,如图2,点鸟在抛物线AEO上.设点4的横坐标为

m(0<m<6),求栅栏总长/与m之间的函数表达式和/的最大值;

(ii)现修建一个总长为18的栅栏,有如图3所示的修建“E”型或“P”型栅型两种设计方案,

请你从中选择一种,求出该方案下矩形《心巴巴面积的最大值,及取最大值时点《的横坐标的取值范围

(耳在巴右侧).

2022年安徽省初中学业水平考试

数学(试题卷)

一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C.。四个

选项,其中只有一个是符合题目要求的.

1.下列为负数的是()

A.|-2|B.V3C.0D.-5

【答案】D

【解析】

【分析】根据正负数的意义分析即可;

【详解】解:A、卜2|=2是正数,故该选项不符合题意;

B、6是正数,故该选项不符合题意;

C、0不负数,故该选项不符合题意;

D、-5<0是负数,故该选项符合题意.

故选D.

【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关

键.

2.据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()

A.3.4xlO8B.0.34xl08C.3.4xl07D.34xl06

【答案】C

【解析】

【分析】将3400万写成34000000,保留1位整数,写成axl0”(l<a<10)的形式即可,〃为正整数.

【详解】解:3400万=34000000,保留1位整数为3.4,小数点向左移动7位,

因此34000000=3.4x107,

故选:C.

【点睛】本题考查科学记数法的表示方法,熟练掌握ax10"(14时<10)中a的取值范围和n的取值方法

是解题的关键.

3.一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()

【答案】A

【解析】

【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.

【详解】解:该几何体的俯视图为:

故选:A

【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.

4.下列各式中,计算结果等于/的是()

36s2

A.a+aB.//c.a'°-aD.a'^a

【答案】B

【解析】

【分析】利用整式加减运算和基的运算对每个选项计算即可.

【详解】A."+。6,不是同类项,不能合并在一起,故选项A不合题意;

B.。3.。6=03+6=/,符合题意;

C.a'0-a>不是同类项,不能合并在一起,故选项C不合题意;

D.。~2=产2="6,不符合题意,

故选B

【点睛】本题考查了整式运算,熟练掌握整式的运算性质是解题的关键.

5.甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是()

A.甲B.乙C.丙D.T

【答案】A

【解析】

【分析】根据图象,先比较甲、乙的速度;然后再比较丙、丁的速度,进而在比较甲、丁的速度即可.

【详解】乙在所用时间为30分钟时,甲走的路程大于乙走的路程,故甲的速度较快;

丙在所用时间为50分钟时,丁走的路程大于丙走的路程,故丁的速度较快;

又因为甲、丁在路程相同的情况下,甲用的时间较少,故甲的速度最快,

故选A

【点睛】本题考查了从图象中获取信息的能力,正确的识图是解题的关键.

【答案】C

【解析】

【分析】用三角形外角性质得到/3=/1-90°=a-90°,用余角的定义得到/2=90。-/3=180°-a.

【详解】解:如图,Z3=Zl-90°=a-90°,

Z2=90°-Z3=180°-«.

1

故选:C.

2

【点睛】本题主要考查了矩形,三角形外角,余角,解决问题的关键是熟练掌握矩形的角的性质,三角

形的外角性质,互为余角的定义.

7.已知。。的半径为7,AB是。。的弦,点尸在弦AB上.若%=4,P8=6,则。P=()

B.4C.V23D.5

【答案】D

【解析】

【分析】连接。4,过点。作0CJ_4?于点C,如图所示,先利用垂径定理求得

4C=BC=;AB=5,然后在用AAOC中求得oc=2«,再在RfAPOC中,利用勾股定理即可求

解.

【详解】解:连接。4,过点。作OCLA3看点C,如图所示,

OA=1,

':PA=4,PB=6,

AB=7V1+PB=4+6=1O,

AC=BC=-AB^5,

2

PC=AC-PA^5-4=i,

在用AAOC中,OC=JQ42一A02=々-52=2屈,在向APOC中,

OP=Voc2+PC2=、(2府+12=5.

故选:D

【点睛】本题考查了垂径定理及勾股定理的运用,构造直角三角形是解题的关键.

8.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由

三个小正方形组成的进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小

正方形和一个白色小正方形的概率为()

A.-B.-C.1D.-

3823

【答案】B

【解析】

【分析】列出所有可能的情况,找出符合题意的情况,利用概率公式即可求解.

【详解】解:对每个小正方形随机涂成黑色或白色的情况,如图所示,

rmmn

rmmn

____________________共有8种情况,其中恰好是两个黑色小正方形和一个白色小正方形情况有3

FTTH

mn

种,

恰好是两个黑色小正方形和一个白色小正方形的概率为1,

O

故选:B

【点睛】本题考查了用列举法求概率,能一个不漏的列举出所有可能的情况是解题的关键.

9.在同一平面直角坐标系中,一次函数y=or+/与>+4的图像可能是()

y

【答案】D

【解析】

【分析】分为。>0和。<0两种情况,利用一次函数图像的性质进行判断即可.

【详解】解:当x=l时.,两个函数的函数值:y=a+a2,即两个图像都过点(l,a+4),故选项A、C

不符合题意;

当。>()时,/〉0,一次函数丁=ax+/经过一、二、三象限,一次函数y=a,+a经过一、二、三

象限,都与y轴正半轴有交点,故选项B不符合题意;

当。<0时,/>o,一次函数丁=公+/经过一、二、四象限,与y轴正半轴有交点,一次函数

>经过一、三、四象限,与y轴负半轴有交点,故选项D符合题意.

故选:D.

【点睛】本题主要考查了一次函数的图像性质.理解和掌握它的性质是解题的关键.

一次函数丫="+匕的图像有四种情况:

①当人>0,匕>0时,函数、=丘+匕的图像经过第一、二、三象限;

②当4>0,人<0时,函数丫=丘+人的图像经过第一、三、四象限;

③当《<0,。>0时,函数丫=依+匕的图像经过第一、二、四象限;

④当々<0,6<0时,函数丫=丘+。的图像经过第二、三、四象限.

10.已知点。是边长为6的等边△ABC的中心,点尸在△ABC外,ZVIBC,△以8,APBC,的面

积分别记为50,S,,邑,S,.若$+S2+S3=2SO,则线段OP长的最小值是()

A,B.述C.3J3D.述

22X。2

【答案】B

【解析】

[分析]根据St+S2+S^2S0,可得=;So,根据等边三角形的性质可求得aABC中AB边上的高九

和△孙8中A8边上的高为的值,当P在CO的延长线时,0尸取得最小值,OP=CP-OC,过。作

OELBC,求得002vL则可求解.

【详解】解:如图,

**,S]+S2+S3=S]+(S4PDB+SABDC)+(SAPDA+S4ADC)

=S]+(S4PDB+S/DA)+(S^nc+S4ADC)

=S]+S4PAB+S4ABe

=S]+S]+s0

=2S,+S0=2S0,

设AABC中A8边上的高为%,aaiB中A8边上的高为/?2,

则So=gA8・4=(?6叫34,

£也=;?6冉3%,

3kl=g?3%,

/册-

2kl,

•••△ABC是等边三角形,

:.%=5-§2=36,4=;%=患.

点P在平行于AB,且到AB的距离等于|6的线段上,

...当点尸在C。延长线上时,OP取得最小值,

过。作OELBC于E,

CP=4+/?2=TG,

是等边AABC的中心,OELBC

:.ZOCE=30°,CE=、BC=3

2

Z.OC=2OE

OE2+CE2=OC2,

OE2+32=(2OE)2,

解得OE=^,

:.OC=2y/3,

:.OP=CP-OC=-G-26=-y/3.

22

故选B.

【点睛】本题考查了等边三角形的性质,勾股定理,三角形的面积等知识,弄清题意,找到P点的位置是

解题的关键.

二、填空题(本大题共4小题,每小题5分,满分20分)

X—3

11.不等式丁21的解集为.

2

【答案】x>5

【解析】

【分析】根据解一元一次不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1可得答案.

【详解】解:^>1

2

去分母,得/322,

移项,得应2+3,

合并同类项,系数化1,得,

故答案为:应5.

【点睛】本题考查了解一元一次不等式,解题的关键掌握解一元一次不等式的方法步骤.12.若一元二次

方程2犬-4x+m=0有两个相等的实数根,则m=.

【答案】2

【解析】

【分析】由方程有两个相等的实数根可知,利用根的判别式等于0即可求,〃的值,

【详解】解:由题意可知:

a=2,b=4c=m

△=b1-4ac=0,

16-4x2x/n=0,

解得:m-1.

故答案为:2.

【点睛】本题考查了利用一元二次方程根的判别式△=从-4ac求参数:方程有两个不相等的实数根时,

△X);方程有两个相等的实数根时,△=();方程无实数根时,△<◊等知识.会运用根的判别式和准确

的计算是解决本题的关键.

13.如图,平行四边形0A8C的顶点0是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数

k

y=,的图象经过点C,丁=嚏伏工0)的图象经过点艮若OC=AC,则上=

X

【答案】3

【分析】过点C作C£>_LOA于。,过点B作轴于E,先证四边形CDEB为矩形,得出CD=BE,再

证丝R/ABAE(HL),根据S平行四边眼OCBA=4SAOC£>=2,再求SAt>a4=5S平行四边形比3=1即可,

【详解】解:过点C作COLQ4于£>,过点8作BELx轴于E,

.'.CD//BE,

•..四边形A3C。为平行四边形,

CB//OA,即CB〃Z)E,OC=AB,

四边形CDEB为平行四边形,

u

:CD±OAf

・・・四边形CD网为矩形,

:・CD=BE,

・・・在Rt^COD和Rt^BAE中,

OC=AB

CD=EB'

:,Rt&COD/RsBAE(HL),

SAOCE^SAABE,

9

:0C=AC,CD.LOA9

OD=ADf

•.•反比例函数y=」的图象经过点C,

X

.1

•c•hOCDc=^hCAD=5,

S平行四边形OC'6A=4SAOCD=2,

•••SAOBQ/S平行四边形ocfiA=1'

.13

••SAOBE=SAOBA+SAABE=1H———»

22

3

:.k=2x-=3.

2

故答案为3.

【点睛】本题考查反比例函数&的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等

判定与性质,掌握反比例函数A的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等

判定与性质.

14.如图,四边形ABC。是正方形,点E在边AO上,ABEF是以E为直角顶点的等腰直角三角形,EF,

B尸分别交CO于点M,N,过点尸作4。的垂线交4。的延长线于点G.连接。尸,请完成下列问题:

(1)4FDG=°;

(2)若OE=1,DF=2近,则M?V=

【答案】①.45②.—

【解析】

【分析】(1)先证AABE丝△GEF,得FG=AE=DG,可知△CFG是等腰直角三角形即可知NEDG度数.

(2)先作FH工CD于H,利用平行线分线段成比例求得MH;再作于尸,证.△MPFsaNHF,即

可求得NH的长度,MN=MH+NH即可得解.

【详解】(1);四边形ABC。是正方形,

ZA=90°,AB=AD,

:.ZABE+ZAEB=90°,

":FGLAG,

NG=NA=90。,

•••△BEF是等腰直角三角形,

:.BE=FE,NBEF=90。,

ZAEB+ZFEG=90°,

:.NFEG=NEBA,

在4GEF中,

"ZA=NG

<ZABE=NGEF,

BE=EF

:.AABE^AGEF(AAS),

:.AE=FG,AB=GE,

,在正方形ABC。中,AB=AD

:.AD=GEAD=AE+DE,EG=DE+DG,

:.AE=DG=FG,

:.NFDG=/DFG=45。.

故填:45°.(2)如图,作FHLCD于H,

:.ZFHD=90°

又;NG=NGDH=90。,

四边形OGFH是矩形,

XVDG=FG,

,四边形QGFH是正方形,

:.DH=FH=DG=2,

:.AG//FH

.DEDM

24

:.DM=-,MH=-,

33

作MP_L。/于P,

,?NMDP=NDMP=45°,

:.DP=MP,

':DP2+MP2=DM2,

:.DP=MP^—,

3

3

ZMFP+ZMFH=ZMFH+ZNFH=45°,

:.4MFP=NNFH,

,:NMPF=NNHF=90°,

:.丛MPFs/XNHF,

572

.MPPFV22

即二:.NH=-,

35

NH2

MN=MH+NH=一+—=—.

3515

,,工+26

故填:一.

15

【点睛】本题主要考查正方形的性质及判定以及相似三角形的性质和判定,熟知相关知识点并能熟练运

用,正确添加辅助线是解题的关键.

三、(本大题共2小题,每小题8分,满分16分)

15.计算:[J-V16+(-2)2.

【答案】1

【解析】

【分析】原式运用零指数累,二次根式的化简,乘方的意义分别计算即可得到结果.

Q-加+(-2『

【详解】

=1一4+4=1【点睛】本题主要考查了实数的运算,熟练掌握零指数基,二次根式的化简和乘方的意义是

到M旦G,请画出△AAG;

(2)以边4c的中点。为旋转中心,将△A8C按逆时针方向旋转180。,得到星G,请画出

△AB2C2.

【答案】(I)见解析(2)见解析

【解析】

【分析】(1)根据平移的方式确定出点A”田,G的位置,再顺次连接即可得到△A4G;

(2)根据旋转可得出确定出点儿,生,C2的位置,再顺次连接即可得到△4&C2.

【小问1详解】

如图,△AAG即为所作;

【点睛】本题考查作图-旋转变换与平移变换,解题的关键是

理解题意,灵活运用所学知识解决问题.

四、(本大题共2小题,每小题8分,满分16分)17.某地区2020年进出口总额为520亿元.2021

年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口

额+出口额.

(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,),的代数式填表:

年份进口额/亿元出口额/亿元进出口总额/亿元

2020Xy520

20211.25A:1.3y

(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额度分别是多少亿元?

【答案】(1)1.25x+l.3y

(2)2021年进口额400亿元,出口额260亿元.

【解析】

【分析】(1)根据进出口总额=进口额+出口额计算即可;

(2)根据2021年进出口总额比2020年增加了140亿元,列方程1.25x+1.3)=520+140,然后联立方程组

x+y=520

解方程组即可.

1.25x4-1.3^=520+140

【小问1详解】

解:

年份进口额/亿元出口额/亿元进出口总额/亿元

2020Xy520

20211.25工1.3y1.25r+L3y

故答案为:1.25x+1.3y;

【小问2详解】

解:根据题意1.25x+l.3),=520+140,

x+y=520

•,1.25x+1.3y=520+140'

x=320

解得:

y=200

2021年进口额1.25x=1.25x320=400亿元,2021年出口额是L3y=1.3x200=260亿元.【点睛】本题

考查列二元一次方程组解应用题,列代数式,掌握列二元一次方程组解应用题的方法与步骤是解题关键.

18.观察以下等式:

第1个等式:(2xl+l)2=(2X2+1)2-(2X2)2,

第2个等式:(2x2+l)2=(3x4+iy-(3x4)2,

第3个等式:(2X3+1)2=(4X6+1)2-(4X6)2,

第4个等式:(2X4+1)2=(5X8+1)2-(5X8)2,

按照以上规律.解决下列问题:

(1)写出第5个等式:;

(2)写出你猜想的第〃个等式(用含"的式子表示),并证明.

【答案】(1)(2x5+l『=(6x10+1)2—(6x10)2

(2)(2n+1)2=[(«+1)-2n+1]2-[(«+1)-2/i]2,证明见解析

【解析】

【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;

(2)观察相同位置的数变化规律可以得出第〃个等式为(2〃+1)2=[(”+1)•2〃+1]2-[(«+1)-2裙,利

用完全平方公式和平方差公式对等式左右两边变形即可证明.

【小问1详解】

解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:

(2x5+l)2=(6x10+1)2—(6x10)2,

故答案为:(2x5+l)2=(6x10+1)2—(6x10)2;

【小问2详解】

解:第〃个等式为(2〃+1)2=[(〃+1).2〃+1y—[(〃+1>2〃『,

证明如下:

等式左边:(2“+1『=4"+4“+1,

等式右边:[(n+1)-2/1+1]2-[(/?+1)-2n]2=[(〃+1>2〃+1+(〃+1>2〃卜[(〃+1)・2〃+1-(〃+1>2〃]

=[(n+l)-4n+l]xl=4/r+4n+l,

故等式(2〃+=[伽+1)•2〃+1]2-[(«+1)-2n]2成立.

【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关

键.

五、(本大题共2小题,每小题10分,满分20分)

19.已知4B为。。的直径,C为。。上一点,。为84的延长线上一点,连接CD

cc

♦(l)如图1,若COL48,/£)

图1图2

=30°,OA=\,求AO的长;

(2)如图2,若0c与(DO相切,E为。A上一点,且NACO=/AC£,求证:CEYAB.

【答案】(1)V3-1

(2)见解析

【解析】

【分析】(1)根据直角三角形的性质(在直角三角形中,30。角所对的直角边等于斜边的一半)及勾股定

理可求出0D,进而求出AD的长;

(2)根据切线的性质可得0C1CZ),根据同一个圆的半径相等及等腰三角形的性质可得/OC4=/OAC,

由各个角之间的关系以及等量代换可得答案.

【小问1详解】

解:':OA=l=OC,COLAB,ZD=30°

/.CD=2-0C=2

OD=^CEr-OC1=A/22-12=G

:.AD=OD-OA=M-1【小问2详解】

证明:...OC与。0相切

OC1CD

即/ACQ+/OCA=90。

•/0C=OA

ZOCA=ZOAC

,:ZACD=ZACE

:.ZOAC+ZACE=90°

:.NAEC=90°

.,.CEA.AB

【点睛】本题考查切线的性质,直角三角形的性质,勾股定理以及等腰三角形的性质,掌握相关性质定理

是解题的关键.

20.如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在

C的北偏东37°方向上,沿正东方向行走90米至观测点。,测得A在。的正北方向,8在。的北偏西

53°方向上.求A,8两点间的距离.参考数据:sin37°«0.60,cos37°®0.80,tan37°«0.75.

【答案】96米

【解析】

【分析】根据题意可得AACD是直角三角形,解可求出AC的长,再证明ABCD是直角三角

形,求出8c的长,根据AB=4C-BC可得结论.

【详解】解:;A,B均在C的北偏东37。方向上,A在。的正北方向,且点。在点C的正东方,

AAC。是直角三角形,

ZfiCD=90°-37°=53°,

/A=90°-N8CD=90°-53°=37°,

在RfAACO中,——=sinZA,C£>=90米,

AC

CD90

AC==150TK,

sinNA0.60

ZCDA=90°,ABDA=53°,

...ZBDC=90°-53°=37°,

ZBCD+ZBDC=370+53°=90°,

ZCBD=90°,即\BCD是直角三角形,

—=sinZBDC,

CD

BC=CD.sinZBDC®90x0.60=54米,

AB=AC-60=150—54=96米,

答:A,8两点间的距离为96米.

【点睛】此题主要考查了解直角三角形-方向角问题的应用,解一般三角形,求三角形的边或高的问题一般

可以转化为解直角三角形的问题.

六、(本题满分12分)

21.第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生.为了解这两个

年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取〃名学生进行冬奥会知识测试,将测试成

绩按以下六组进行整理(得分用x表示):

A:70<x<75,B:75<x<80,C:80<x<85,

D:85Kx<90,E;90<x<95,F:95<x<100,

并绘制七年级测试成绩频数直方图和八年级测试成绩扇形统计图,部分信息如下:

七年级测试成绩频数直方图八年级测试成绩扇形统计图

己知八年级测试成绩。组的全部数据如下:86,85,87,86,85,89,88

请根据以上信息,完成下列问题:

(1)“=,a=;

(2)八年级测试成绩的中位数是;

(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会

关注程度高的学生一共有多少人,并说明理由.

【答案】(1)20;4

(2)86.5(3)该校七、八两个年级对冬奥会关注程度高的学生一共有275人.

【解析】

【分析】(1)八年级。组:85<90的频数为组占35%求出〃,再利用样本容量减去其他四组人数

-2求。=5(20-1-2-3-6)=4即可;

(2)根据中位数定义求解即可;

(3)先求出七八年级不低于90分的人数,求出占样本的比,用两个年级总数xU计算即可.

40

【小问1详解】

解:八年级测试成绩。组:85<90的频数为7,由扇形统计图知。组占35%,

进行冬奥会知识测试学生数为〃=7+35%=20,

/.tz=-x(20-l-2-3-6)=4,

故答案为:20;4;

【小问2详解】

解:A、B、C三组的频率之和为5%+5%+20%=30%<50%,A、B、C、。四组的频率之和为

30%+35%=65%>50%,

,中位数在。组,将。组数据从小到大排序为85,85,86,86,87,88,89,

V20x30%=6,第10与第11两个数据为86,87,

中位数为三=865,

故答案为:86.5;

【小问3详解】

解:八年级氏90<x<95,F:954]<100两组占1-65%=35%,

共有20x35%=7人

七年级E:90Kx<95,尸:95WxW100两组人数为3+1=4人,

两年级共有4+7=11人,

占样本匚,

40

...该校七、八两个年级对冬奥会关注程度高的学生一共有养x(500+500)=275(人).

【点睛】本题考查从频率直方图和扇形统计图获取信息与处理信息,样本的容量,频数,中位数,用样本

的百分比含量估计总体中的数量,掌握样本的容量,频数,中位数,用样本的百分比含量估计总体中的数

量是解题关键.

七、(本题满分12分)

22.已知四边形ABC。中,BC=CD.连接8D,过点C作8。的垂线交48于点E,连接。E.

DCC

D

(1)如图1,若。£〃3C,求证:四边形8COE

图2

是菱形;

(2)如图2,连接AC,设BQ,AC相交于点F,OE垂直平分线段AC.

(i)求/CEQ的大小;

(ii)AF=AE,求证:BE=CF.

【答案】(1)见解析(2)(i)NCED=60°;(ii)见解析

【解析】

【分析】(1)先根据。C=8C,CELBD,得出。0=8。,再根据“AAS”证明AO£>唐AOBC,得出

DE=BC,得出四边形8C£>E为平行四边形,再根据对角线互相垂直的平行四边形为菱形,得出四边形

8CQE为菱形;(2)(i)根据垂直平分线的性质和等腰三角形三线合一,证明/BEG=/CEO=/BEO,

1QQO

再根据NBEG+N0E0+NBEO180。,即可得出NCEO=——=60°;

3

(近)连接后尸,根据已知条件和等腰三角形的性质,算出NGEb=15°,得出NO及'=45。,证明

OE=OF,再证明ABQE乌ACO产,即可证明结论.

【小问1详解】

证明:-:DC=BC,CE1BD,

:.DO=BO,

•••DE//BC,

:.NODE=ZOBC,ZOED=ZOCB,

:.kODEqkOBC(AAS),

DE-BC,

四边形BCDE为平行四边形,

,:CELBD,

...四边形8CDE为菱形.

D。C

【小问2详解】

AEB

(i)根据解析(1)可知,BO=DO,

垂直平分BQ,

:.BE=DE,

':BO=DO,

:.ZBEO=ZDEO,

♦.•OE垂直平分AC,:.AE=CE,

'CEGLAC,

:.NAEG=NDEO,

:.NAEG=/DEO=NBEO,

':ZAEG+NDEO+ZBEO=180°,

1QAO

/.ZCED=—=60°.

3

(ii)连接EF,

•:EG1.AC,

:.NEG尸=90°,

ZEFA=90°—/GEF,

,:ZAEF=1800-NBEF

=180°-ZfiEC-ZCEF180°-/BEC-(NCEG-/GEF)=180°-60°-60°+ZGEF

=60°+NGEFAE=AF,

ZAEF=ZAFE,

:.90°-ZGEF=60°+ZGEF,

ZGEF=15°,

,NOEF=Z.CEG-Z.GEF=60°-15°=45°,

:CE上BD,

:.ZEOF=NEOB=90。,

:.ZOFE=90°-/OEF=45°,ZOEF=Z.OFE,

/.OE=OF,

•.•A£=CE,

/.ZEAC^ZECA,

ZEAC+ZECA=NCEB=60°,

:.ZECA=30°,

NEBO=90°-ZOEB=30°,

:.NOCF=NOBE=30

•:4BOE=NCOF=90。,

:.ABOE^ACOF(AAS),

:.BE=CF.

【点睛】本题主要考查了垂直平分线的性质、等腰三角形的判定和性质,三角形全等的判定和性质,菱形

的判定,直角三角形的性质,作出辅助线,得出NGEF=15。,得出OE=O尸,是解题的关键.

八、(本题满分14分)

23.如图1,隧道截面由抛物线的一部分AEZ)和矩形ABCO构成,矩形的一边BC为12米,另一边AB为

2米.以8c所在的直线为x轴,线段的垂

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论