版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
公式法整理课件你能将多项式x2-16与多项式m2-4n2分解因式吗?这两个多项式有什么共同的特点吗?(a+b)(a-b)=a2-b2a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积.公式法(1)整理课件例3分解因式:(1)4x2–9;(2)(x+p)2–(x+q)2.
分析:在(1)中,4x2=(2x)2,9=32,4x2-9=(2x)2–32,即可用平方差公式分解因式.在(2)中,把(x+p)和(x+q)各看成一个整体,设x+p=m,x+q=n,则原式化为m2-n2.4x2–9=(2x)2–32
=(2x+3)(2x–
3).(x+p)2–(x+q)2=[(x+p)+(x+q)][(x+p)–(x+q)]=(2x+p+q)(p–q).整理课件例4分解因式:(1)x4—y4;(2)a3b—ab.分析:(1)x4-y4写成(x2)2-
(y2)2的形式,这样就可以利用平方差公式进行因式分解了.(2)a3b-ab有公因式ab,应先提出公因式,再进一步分解.解:(1)x4-y4
=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y).(2)a3b-ab=ab(a2-
1)=ab(a+1)(a-
1).分解因式必须进行到每一个多项式都不能再分解为止.整理课件练习1.下列多项式能否用平方差公式来分解因式?为什么?(1)x2+y2;(2)x2-y2;(3)-x2+y2;(4)-x2-y2.2.分解因式:(1)a2-
b2;(2)9a2-4b2;(3)x2y-4y;(4)-a4+16.整理课件
思维延伸1.观察下列各式:32-12=8=8×1;52-32=16=8×2;72-52=24=8×3;……把你发现的规律用含n的等式表示出来.2.对于任意的自然数n,(n+7)2-
(n-5)2能被24整除吗?为什么?整理课件思考:
你能将多项式a2+2ab+b2
与a2-2ab+b2分解因式吗?这两个多项式有什么特点?(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2公式法(2)整理课件·例5分解因式:
(1)16x2+24x+9;(2)–x2+4xy–4y2.分析:在(1)中,16x2=(4x)2,9=32,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+32a22abb2+·解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)2.+整理课件解:(2)
-x2+4xy-4y2
=-
(x2-4xy+4y2)=-
[x2-2·x·2y+(2y)2]=-(x-2y)2.例5分解因式:
(1)
16x2+24x+9;(2)
–x2+4xy–4y2.整理课件
例6
分解因式:
(1)3ax2+6axy+3ay2;
(2)(a+b)2-12(a+b)+36.分析:在(1)中有公因式3a,应先提出公因式,再进一步分解.解:(1)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2.(2)(a+b)2-12(a+b)+36=(a+b)2-2·(a+b)·6+62=(a+b-6)2.将a+b看作一个整体,设a+b=m,则原式化为完全平方式m2-12m+36.整理课件
练习1.下列多项式是不是完全平方式?为什么?(1)a2-4a+4;(2)1+4a2;(3)4b2+4b-1;(4)a2+ab+b2.2.分解因式:(1)x2+12x+36;(2)-2xy
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024届山西省昔阳县中学高考仿真模拟化学试卷含解析
- 2024年春季教材更新:20以内加减法课件全新解读
- 数控编程零件加工理论题
- 2024年教育技术新篇章:《童心是小鸟》课件的崛起
- 2023年中医内科学主治医师考试真题及答案解析
- 整改5s通知单空白模板
- 2020年一级建造师《建筑工程》各章节考点:流水施工方法的应用-68
- 2025届中考历史一轮复习考点强化练6辽宋夏金元时期民族关系发展和社会变化
- 2024年泵与风机在热电行业的应用:课件分享
- 2024-2025学年高中物理第十八章原子结构2原子的核式结构模型课后作业含解析新人教版选修3-5
- 心脏骤停急救-课件
- XX医院康复科建设方案
- 出差申请表(模板)
- 中药材技术创新中心的可行性研究报告
- 有机合成化学(山东联盟)知到章节答案智慧树2023年青岛科技大学
- 商标法题库1(答案)
- TMF自智网络白皮书4.0
- 电视剧《国家孩子》观影分享会PPT三千孤儿入内蒙一段流淌着民族大爱的共和国往事PPT课件(带内容)
- 所水力除焦设备介绍
- 改革开放英语介绍-课件
- pet考试历届真题和答案
评论
0/150
提交评论