山西省大同市灵丘四中学2022年九年级数学第一学期期末达标检测试题含解析_第1页
山西省大同市灵丘四中学2022年九年级数学第一学期期末达标检测试题含解析_第2页
山西省大同市灵丘四中学2022年九年级数学第一学期期末达标检测试题含解析_第3页
山西省大同市灵丘四中学2022年九年级数学第一学期期末达标检测试题含解析_第4页
山西省大同市灵丘四中学2022年九年级数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,已知若的面积为,则的面积为()A. B. C. D.2.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B,与y轴的正半轴交于点C.现有下列结论:①abc>0;②4a﹣2b+c>0;③2a﹣b>0;④3a+c=0,其中,正确结论的个数是()A.1 B.2 C.3 D.43.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是(

)A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.94.如图,在Rt△ABC内有边长分别为a,b,c的三个正方形.则a、b、c满足的关系式是()A.b=a+c B.b=ac C.b2=a2+c2 D.b=2a=2c5.已知关于的一元二次方程的两个根分别是,,且满足,则的值是()A.0 B. C.0或 D.或06.如图,将Rt△ABC绕直角顶点C顺时针旋转90°得到△DEC,连接AD,若∠BAC=26°,则∠ADE的度数为()A.13° B.19° C.26° D.29°7.已知命题“关于的一元二次方程必有两个实数根”,则能说明该命题是假命题的的一个值可以是()A.1 B.2 C.3 D.48.如图,是的内切圆,切点分别是、,连接,若,则的度数是()A. B. C. D.9.已知是实数,则代数式的最小值等于()A.-2 B.1 C. D.10.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)11.在平面直角坐标系中,将点向下平移个单位长度,所得到的点的坐标是()A. B.C. D.12.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B. C. D.4二、填空题(每题4分,共24分)13.方程(x﹣1)(x﹣3)=0的解为_____.14.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.15.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠C=40°,OA=9,则BD的长为.(结果保留π)16.如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.17.瑞士中学教师巴尔末成功的从光谱数据:,……中得到巴尔末公式,从而打开光谱奥妙的大门.请你根据以上光谱数据的规律写出它的第七个数据___.18.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数关系式是y=60t-t2,在飞机着陆滑行中,最后2s滑行的距离是______m三、解答题(共78分)19.(8分)如图,(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=20°,∠OAC=80°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2),请回答:∠ADB=°,AB=.(2)请参考以上思路解决问题:如图3,在四边形ABCD中,对角线AC、BD相交于点O,AC⊥AD,AO=6,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.20.(8分)如图,E、F分别为线段AC上的两个点,且DE⊥AC于点E,BF⊥AC于点F,若AB=CD,AE=CF.求证:BF=DE.21.(8分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.(1)画树状图或列表求出各人获胜的概率。(2)这个游戏公平吗?说说你的理由22.(10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.23.(10分)空间任意选定一点,以点为端点作三条互相垂直的射线,,.这三条互相垂直的射线分别称作轴、轴、轴,统称为坐标轴,它们的方向分别为(水平向前),(水平向右),(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为,且的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体所在的面与轴垂直,所在的面与轴垂直,所在的面与轴垂直,如图所示.若将轴方向表示的量称为几何体码放的排数,轴方向表示的量称为几何体码放的列数,轴方向表示的量称为几何体码放的层数;如图是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了排列层,用有序数组记作(1,2,6),如图的几何体码放了排列层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组表示一种几何体的码放方式.(1)有序数组(3,2,4)所对应的码放的几何体是_____;(2)图是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(___,____,____),组成这个几何体的单位长方体的个数为____个;(3)为了进一步探究有序数组的几何体的表面积公式,某同学针对若干个单位长方体进行码放,制作了下列表格:根据以上规律,请直接写出有序数组的几何体表面积的计算公式;(用表示)(4)当时,对由个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(___,___,___),此时求出的这个几何体表面积的大小为________.(缝隙不计)24.(10分)为弘扬遵义红色文化,传承红色文化精神,某校准备组织学生开展研学活动.经了解,有A.遵义会议会址、B.苟坝会议会址、C.娄山关红军战斗遗址、D.四渡赤水纪念馆共四个可选择的研学基地.现随机抽取部分学生对基地的选择进行调查,每人必须且只能选择一个基地.根据调查结果绘制如下不完整的条形统计图和扇形统计图.(1)统计图中______,______;(2)若该校有1500名学生,请估计选择基地的学生人数;(3)某班在选择基地的6名学生中有4名男同学和2名女同学,需从中随机选出2名同学担任“小导游”,请用树状图或列举法求这2名同学恰好是一男一女的概率.25.(12分)已知关于x的一元二次方程(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为1.当△ABC是等腰三角形时,求k的值26.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据相似三角形的性质得出,代入求出即可.【详解】解:∵△ADE∽△ABC,AD:AB=1:3,∴,∵△ABC的面积为9,∴,∴S△ADE=1,故选:A.【点睛】本题考查了相似三角形的性质定理,能熟记相似三角形的面积比等于相似比的平方是解此题的关键.2、B【分析】由抛物线的开口方向,判断a与0的关系;由对称轴与y轴的位置关系,判断ab与0的关系;由抛物线与y轴的交点,判断c与0的关系,进而判断abc与0的关系,据此可判断①.由x=﹣2时,y=4a﹣2b+c,再结合图象x=﹣2时,y>0,即可得4a﹣2b+c与0的关系,据此可判断②.根据图象得对称轴为x=﹣>﹣1,即可得2a﹣b与0的关系,据此可判断③.由x=1时,y=a+b+c,再结合2a﹣b与0的关系,即可得3a+c与0的关系,据此可判断④.【详解】解:①∵抛物线的开口向下,∴a<0,∵对称轴位于y轴的左侧,∴a、b同号,即ab>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;②如图,当x=﹣2时,y>0,即4a﹣2b+c>0,故②正确;③对称轴为x=﹣>﹣1,得2a<b,即2a﹣b<0,故③错误;④∵当x=1时,y=0,∴0=a+b+c,又∵2a﹣b<0,即b>2a,∴0=a+b+c>a+2a+c=3a+c,即3a+c<0,故④错误.综上所述,①②正确,即有2个结论正确.故选:B.【点睛】本题考查二次函数图象位置与系数的关系.熟练掌握二次函数开口方向、对称轴、与坐标轴交点等性质,并充分运用数形结合是解题关键.3、D【解析】A.种植10棵幼树,结果可能是“有9棵幼树成活”,故不正确;B.种植100棵幼树,结果可能是“90棵幼树成活”和“10棵幼树不成活”,故不正确;C.种植10n棵幼树,可能有“9n棵幼树成活”,故不正确;D.种植10n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9,故正确;故选D.4、A【分析】利用解直角三角形知识.在边长为a和b两正方形上方的两直角三角形中由正切可得,化简得b=a+c,故选A.【详解】请在此输入详解!5、C【分析】首先根据一元二次方程根与系数关系得到两根之和和两根之积,然后把x12+x22转换为(x1+x2)2-2x1x2,然后利用前面的等式即可得到关于m的方程,解方程即可求出结果.【详解】解:∵x1、x2是一元二次方程x2-mx+2m-1=0的两个实数根,

∴x1+x2=-(2m+1),x1x2=m-1,

∵x12+x22=(x1+x2)2-2x1x2=3,

∴[-(2m+1)]2-2(m-1)=3,

解得:m1=0,m2=,

又∵方程x2-mx+2m-1=0有两个实数根,

∴△=(2m+1)2-4(m-1)≥0,

∴当m=0时,△=5>0,当m=时,△=6>0

∴m1=0,m2=都符合题意.故选:C.【点睛】本题考查一元二次方程根与系数的关系、完全平方公式,解题关键是熟练掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.6、B【分析】根据旋转的性质可得AC=CD,∠CDE=∠BAC,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CDA=45°,根据∠ADE=∠CDA﹣∠CDE,即可求解.【详解】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∠CDE=∠BAC=26°,∴△ACD是等腰直角三角形,∴∠CDA=45°,∴∠ADE=∠CDA﹣∠CDE=45°﹣26°=19°.故选:B.【点睛】本题主要考查旋转的性质和等腰直角三角形的判定和性质定理,掌握等腰直角三角形的性质,是解题的关键,7、A【分析】根据判别式的意义,当m=1时,△<0,从而可判断原命题为是假命题.【详解】,解:△=n2-4,当n=1时,△<0,方程没有实数根,当n=2时,△=0,方程有两个相等的实数根,当n=3时,△>0,方程有两个不相等的实数根,当n=4时,△>0,方程有两个不相等的实数根,故选:A【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8、C【分析】由已知中∠A=100°,∠C=30°,根据三角形内角和定理,可得∠B的大小,结合切线的性质,可得∠DOE的度数,再由圆周角定理即可得到∠DFE的度数.【详解】解:∠B=180°−∠A−∠C=180−100°−30°=50°

∠BDO+∠BEO=180°

∴B、D、O、E四点共圆

∴∠DOE=180°−∠B=180°−50°=130°

又∵∠DFE是圆周角,∠DOE是圆心角

∠DFE=∠DOE=65°

故选:C.【点睛】本题考查的知识点是圆周角定理,切线的性质,其中根据切线的性质判断出B、D、O、E四点共圆,进而求出∠DOE的度数是解答本题的关键.9、C【分析】将代数式配方,然后利用平方的非负性即可求出结论.【详解】解:====∵∴∴代数式的最小值等于故选C.【点睛】此题考查的是利用配方法求最值,掌握完全平方公式是解决此题的关键.10、C【分析】根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【点睛】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.11、B【解析】横坐标,右移加,左移减;纵坐标,上移加,下移减可得所得到的点的坐标为(2,3-1),再解即可.【详解】解:将点P向下平移1个单位长度所得到的点坐标为(2,3-1),即(2,2),故选:B.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.12、C【分析】根据勾股定理求得,然后根据矩形的性质得出.【详解】解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴,∴,故选:C.【点睛】本题考查的是矩形的性质,两点间的距离公式,掌握矩形的对角线的性质是解题的关键.二、填空题(每题4分,共24分)13、x1=3,x2=1【分析】利用因式分解法求解可得.【详解】解:∵(x﹣1)(x﹣3)=0,∴x﹣1=0或x﹣3=0,解得x1=3,x2=1,故答案为:x1=3,x2=1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14、2【详解】如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1∵点B在双曲线上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=215、132【解析】试题解析:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOD=50°,∴AD的长为50π×9180∴BD的长为π×9-52π=考点:1.切线的性质;2.弧长的计算.16、【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】设A坐标为(x,y),∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0-3,解得:x=-2,y=-3,即A(-2,-3),设过点A的反比例解析式为y=,把A(-2,-3)代入得:k=6,则过点A的反比例解析式为y=,故答案为y=.【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.17、【分析】分子的规律依次是,32,42,52,62,72,82,92…,分母的规律是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,所以第七个数据是.【详解】解:由数据可得规律:分子是,32,42,52,62,72,82,92分母是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,∴第七个数据是.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.18、6【分析】先求出飞机停下时,也就是滑行距离最远时,s最大时对应的t值,再求出最后2s滑行的距离.【详解】由题意,y=60t-t2,=−(t−20)2+600,即当t=20秒时,飞机才停下来.∴当t=18秒时,y=−(18−20)2+600=594m,故最后2s滑行的距离是600-594=6m故填:6.【点睛】本题考查了二次函数的应用.解题时,利用配方法求得t=20时,s取最大值,再根据题意进行求解.三、解答题(共78分)19、(1)80,8;(2)DC=8【分析】(1)根据平行线的性质可得∠ADB=∠OAC=80°,即可证明△BOD∽△COA,可得,求出AD的长度,再根据角的和差关系得∠ABD=180°﹣∠BAD﹣∠ADB=80°=∠ADB,即可得出AB=AD=8.(2)过点B作BE∥AD交AC于点E,通过证明△AOD∽△EOB,可得,根据线段的比例关系,可得AB=2BE,根据勾股定理求出BE的长度,再根据勾股定理求出DC的长度即可.【详解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=80°,∵∠BOD=∠COA,∴△BOD∽△COA,∴∵AO=6,∴OD=AO=2,∴AD=AO+OD=6+2=8,∵∠BAD=20°,∠ADB=80°,∴∠ABD=180°﹣∠BAD﹣∠ADB=80°=∠ADB,∴AB=AD=8,故答案为:80,8;(2)过点B作BE∥AD交AC于点E,如图3所示:∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°,∵∠AOD=∠EOB,∴△AOD∽△EOB,∴∵BO:OD=1:3,∴∵AO=6,∴EO=AO=2,∴AE=AO+EO=6+2=8,∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE,在Rt△AEB中,BE2+AE2=AB2,即(8)2+BE2=(2BE)2,解得:BE=8,∴AB=AC=16,AD=3BE=24,在Rt△CAD中,AC2+AD2=DC2,即162+242=DC2,解得:DC=8.【点睛】本题考查了三角形的综合问题,掌握平行线的性质、相似三角形的性质以及判定定理、勾股定理是解题的关键.20、详见解析.【分析】由题意根据DE⊥AC,BF⊥AC可以证明∠DEC=∠BFA=90°,由“HL”可证Rt△ABF≌Rt△CDE可得BF=DE.【详解】解:证明:∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.【点睛】本题考查全等三角形的判定以及考查全等三角形对应边相等的性质,本题中求证Rt△ABF≌Rt△CDE是解题的关键.21、(1)小力获胜的概率为,小明获胜的概率;(2)不公平,理由见解析【分析】(1)根据题意列出表格,由表格可求出所有等可能结果以及小力获胜和小明获胜的情况,由此可求得两人获胜的概率;(2)比较两人获胜的概率,即可知游戏是否公平.【详解】解:(1)列表得:转盘两个数字之积转盘02110212010∵由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之积为非负数有7个,负数有5个,∴,.(2).∴这个游戏对双方不公平.【点睛】本题考查了概率在游戏公平性中的应用,熟练掌握列表格或树状图法求概率是解题的关键.22、(1)黄球有1个;(2);(3).【分析】(1)首先设口袋中黄球的个数为x个,根据题意得:,解此方程即可求得答案.(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案.(3)由若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;直接利用概率公式求解即可求得答案.【详解】解:(1)设口袋中黄球的个数为x个,根据题意得:,解得:x=1.经检验:x=1是原分式方程的解.∴口袋中黄球的个数为1个.(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况,∴两次摸出都是红球的概率为:.(3)∵摸到红球得5分,摸到黄球得3分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,∴乙同学已经得了7分.∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率为:.23、(1)B;(2);;;;(3);(4);;;.【分析】(1)根据有序数组中x、y和z表示的实际意义即可得出结论;(2)根据三视图的定义和有序数组中x、y和z表示的实际意义即可得出结论;(3)根据题意,分别从不同方向找出面积为、和的长方形,用含x、y、z的式子表示出它们的个数,然后根据表面积公式计算即可;(4)由题意可知:xyz=12,而12=1×1×12=1×2×6=1×3×4=2×2×3,然后分类讨论,根据(3)的公式分别求出在每一种情况下的最小值,最后通过比较找出最小的即可得出结论.【详解】解:(1)有序数组(3,2,4)表示3排2列4层,故B选项符合故选:B.(2)由左视图和俯视图可知:该几何体共码放了2排,由主视图和俯视图可知:该几何体共码放了3列,由主视图和左视图可知:该几何体共码放了2层,故这种码放方式的有序数组为(,,);组成这个几何体的单位长方体的个数为2×3×2=;故答案为:;;;;(3)根据题意可知:从几何体的前面和后面看:面积为的长方形共有2yz个,从几何体的左面和右面看:面积为的长方形共有2xz个,从几何体的上面和下面看:面积为的长方形共有2xy个,∴几何体表面积(4)由题意可知:xyz=12,而12=1×1×12=1×2×6=1×3×4=2×2×3①当xyz=1×1×12时∵根据(3)中公式可知,此时当x=1,y=1,z=12时,几何体表面积最小此时;②当xyz=1×2×6时∵根据(3)中公式可知,此时当x=1,y=2,z=6时,几何体表面积最小此时;③当xyz=1×3×4时∵根据(3)中公式可知,此时当x=1,y=3,z=4时,几何体表面积最小此时;④当xyz=2×2×3时∵根据(3)中公式可知,此时当x=2,y=2,z=3时,几何体表面积最小此时;∵∴这个有序数组为(,,),最小面积为.故答案为:;;;1.【点睛】此题考查的是新定义类问题,读懂材料、并归纳总结公式和掌握三视图的概念和表面积的求法和分类讨论的数学思想是解决此题的关键.24、(1)56,15;(2)555;(3)【分析】(1)根据C基地的调查人数和所在的百分比即可求出调查总人数,再乘调查A基地人数所占的百分比即可求出m,用调查D基地的人数除以调查总人数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论