山东省泰安宁阳县联考2022-2023学年数学九上期末综合测试试题含解析_第1页
山东省泰安宁阳县联考2022-2023学年数学九上期末综合测试试题含解析_第2页
山东省泰安宁阳县联考2022-2023学年数学九上期末综合测试试题含解析_第3页
山东省泰安宁阳县联考2022-2023学年数学九上期末综合测试试题含解析_第4页
山东省泰安宁阳县联考2022-2023学年数学九上期末综合测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在同一直角坐标系中,反比例函数y=与一次函数y=ax+b的图象可能是()A. B.C. D.2.如图所示,在中,与相交于点,为的中点,连接并延长交于点,则与的面积比值为()A. B. C. D.3.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰4.如图,是的外接圆,,点是外一点,,,则线段的最大值为()A.9 B.4.5 C. D.5.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣66.若关于的一元二次方程有两个相等的实数根,则的值为()A. B. C. D.7.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()A.(-,1) B.(-1,) C.(,1) D.(-,-1)8.数据1,3,3,4,5的众数和中位数分别为()A.3和3 B.3和3.5 C.4和4 D.5和3.59.如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.110.如图,在Rt△ABC中,AC=6,AB=10,则sinA的值()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,已知等边的边长为,顶点在轴正半轴上,将折叠,使点落在轴上的点处,折痕为.当是直角三角形时,点的坐标为__________.12.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为,则袋中共有小球_____只.13.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.14.如图,△ABC的外心的坐标是____.15.若是一元二次方程的两个根,则=___________.16.如图,一辆汽车沿着坡度为的斜坡向下行驶50米,则它距离地面的垂直高度下降了米.17.某校有一块长方形的空地,其中长米,宽米,准备在这块空地上修3条小路,路宽都一样为米,并且有一条路与平行,2条小路与平行,其余地方植上草坪,所种植的草坪面积为110米.根据题意可列方程_________.18.如图,在中,,,,将绕点逆时针旋转得到,连接,则的长为__________.三、解答题(共66分)19.(10分)如图,在正方形网格中,每个小正方形的边长均为1个单位.(1)△ABC绕着点C顺时针旋转90°,画出旋转后对应的△A1B1C1;(2)求△ABC旋转到△A1B1C时,的长.20.(6分)如图为正方形网格,每个小正方形的边长均为1,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图,使得每个图形的顶点均在格点上.(1)在图中画一个以为一边的菱形,且菱形的面积等于1.(2)在图中画一个以为对角线的正方形,并直接写出正方形的面积.21.(6分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.22.(8分)如图,在平面直角坐标系中,反比例函数的图象与一次函数的图象的一个交点为.(1)求这个反比例函数的解析式;(2)求两个函数图像的另一个交点的坐标;并根据图象,直接写出关于的不等式的解集.

23.(8分)如图,中,.以点为圆心,为半径作恰好经过点.是否为的切线?请证明你的结论.为割线,.当时,求的长.24.(8分)如图,Rt△FHG中,H=90°,FH∥x轴,,则称Rt△FHG为准黄金直角三角形(G在F的右上方).已知二次函数的图像与x轴交于A、B两点,与y轴交于点E(0,),顶点为C(1,),点D为二次函数图像的顶点.(1)求二次函数y1的函数关系式;(2)若准黄金直角三角形的顶点F与点A重合、G落在二次函数y1的图像上,求点G的坐标及△FHG的面积;(3)设一次函数y=mx+m与函数y1、y2的图像对称轴右侧曲线分别交于点P、Q.且P、Q两点分别与准黄金直角三角形的顶点F、G重合,求m的值并判断以C、D、Q、P为顶点的四边形形状,请说明理由.25.(10分)如图,在中,以为直径的交于点,连接,.(1)求证:是的切线;(2)若,求点到的距离.26.(10分)如图所示,已知扇形AOB的半径为6㎝,圆心角的度数为120°,若将此扇形围成一个圆锥,则:(1)求出围成的圆锥的侧面积为多少;(2)求出该圆锥的底面半径是多少.

参考答案一、选择题(每小题3分,共30分)1、D【分析】先根据一次函数图象经过的象限得出a、b的正负,由此即可得出反比例函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】∵一次函数图象应该过第一、二、四象限,∴a<0,b>0,∴ab<0,∴反比例函数的图象经过二、四象限,故A选项错误,∵一次函数图象应该过第一、三、四象限,∴a>0,b<0,∴ab<0,∴反比例函数的图象经过二、四象限,故B选项错误;∵一次函数图象应该过第一、二、三象限,∴a>0,b>0,∴ab>0,∴反比例函数的图象经过一、三象限,故C选项错误;∵一次函数图象经过第二、三、四象限,∴a<0,b<0,∴ab>0,∴反比例函数的图象经经过一、三象限,故D选项正确;故选:D.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.2、C【分析】根据平行四边形的性质得到OB=OD,利用点E是OD的中点,得到DE:BE=1:3,根据同高三角形面积比的关系得到S△ADE:S△ABE=1:3,利用平行四边形的性质得S平行四边形ABCD=2S△ABD,由此即可得到与的面积比.【详解】在中,OB=OD,∵为的中点,∴DE=OE,∴DE:BE=1:3,∴S△ADE:S△ABE=1:3,∴S△ABE:S△ABD=1:4,∵S平行四边形ABCD=2S△ABD,∴与的面积比为3:8,故选:C.【点睛】此题考查平行四边形的性质,同高三角形面积比,熟记平行四边形的性质并熟练运用解题是关键.3、D【解析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、C【分析】连接OB、OC,如图,则△OBC是顶角为120°的等腰三角形,将△OPC绕点O顺时针旋转120°到△OMB的位置,连接MP,则∠POM=120°,MB=PC=3,OM=OP,根据等腰三角形的性质和锐角三角函数可得,于是求OP的最大值转化为求PM的最大值,因为,所以当P、B、M三点共线时,PM最大,据此求解即可.【详解】解:连接OB、OC,如图,则OB=OC,∠BOC=2∠A=120°,将△OPC绕点O顺时针旋转120°到△OMB的位置,连接MP,则∠POM=120°,MB=PC=3,OM=OP,过点O作ON⊥PM于点N,则∠MON=60°,MN=PM,在直角△MON中,,∴,∴当PM最大时,OP最大,又因为,所以当P、B、M三点共线时,PM最大,此时PM=3+6=9,所以OP的最大值是:.故选:C.【点睛】本题考查了圆周角定理、等腰三角形的性质、旋转的性质、解直角三角形和两点之间线段最短等知识,具有一定的难度,将△OPC绕点O顺时针旋转120°到△OMB的位置,将求OP的最大值转化为求PM的最大值是解题的关键.5、D【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).【详解】解:0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而.故选D.6、B【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2−4ac=0,建立关于k的等式,求出k.【详解】解:∵方程有两个相等的实数根,∴△=b2−4ac=62−4×1×k=36−4k=0,解得:k=1.故选:B.【点睛】本题考查一元二次方程根的情况与判别式,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.7、A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.8、A【分析】根据众数和中位数的定义:一般来说,一组数据中,出现次数最多的数就叫这组数据的众数;把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;即可得解.【详解】由已知,得该组数据中,众数为3,中位数为3,故答案为A.【点睛】此题主要考查对众数、中位数概念的理解,熟练掌握,即可解题.9、D【详解】连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE.∵E是AC中点,∴DE=EH.∴△DCE≌△HAE(AAS).∴DE=HE,DC=AH.∵F是BD中点,∴EF是△DHB的中位线.∴EF=BH.∴BH=AB﹣AH=AB﹣DC=2.∴EF=2.故选D.10、A【分析】根据勾股定理得出BC的长,再根据sinA=代值计算即可.【详解】解:∵在Rt△ABC中,AC=6,AB=10,∴BC==8,∴sinA===;故选:A.【点睛】本题考查勾股定理及正弦的定义,熟练掌握正弦的表示是解题的关键.二、填空题(每小题3分,共24分)11、,【解析】当A′E∥x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=,由此可求出OA′的长,也就能求出A′E的长,据此可求出A′的坐标;当∠A’EO=90°时,△A′EO是直角三角形,设OE=x,则AE=A’E=-x,根据三角函数的关系列出方程即可求解x,从而求出A’的坐标.【详解】当A′E∥x轴时,△OA′E是直角三角形,故∠A′OE=60°,A′E=AE,设A′的坐标为(0,b),∴AE=A′E=A’Otan60°=b,OE=2b,b+2b=2+,∴b=1,A′的坐标是(0,1);当∠A’EO=90°时,△A′EO是直角三角形,设OE=x,则AE=A’E=-x,∵∠AOB=60°,∴A’E=OEtan60°=x=-x解得x=∴A’O=2OE=∴A’(0,)综上,A’的坐标为,.【点睛】此题主要考查图形与坐标,解题的关键是熟知等边三角形的性质、三角函数的应用.12、1.【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得,解得x=1,经检验,x=1是原方程的解,所以袋中共有小球1只.故答案为1.【点睛】此题主要考查概率公式,解题的关键是熟知概率公式的运用.13、【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴=,∴=解得x=,∴阴影部分面积为:S△ABC=××1=,故答案为:.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.14、【解析】试题解析:∵△ABC的外心即是三角形三边垂直平分线的交点,∴作图得:∴EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).15、1【分析】根据韦达定理可得,,将整理得到,代入即可.【详解】解:∵是一元二次方程的两个根,∴,,∴,故答案为:1.【点睛】本题考查韦达定理,掌握,是解题的关键.16、25【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可.【详解】解:设垂直高度下降了x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=1.解得x=25,即它距离地面的垂直高度下降了25米.【点睛】此题考查三角函数的应用.关键是熟悉且会灵活应用公式:tanα(坡度)=垂直高度÷水平宽度,综合利用了勾股定理.17、【分析】根据题意算出草坪的长和宽,根据长方形的面积公式列式即可.【详解】∵长方形长米,宽米,路宽为米,∴草坪的长为,宽为,∴草坪的面积为.故答案为.【点睛】本题主要考查了一元二次方程的应用,根据题意准确列式是解题的关键.18、1【分析】由旋转的性质可得AC=AC1=3,∠CAC1=60°,由勾股定理可求解.【详解】∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===1,故答案为:1.【点睛】本题考查了旋转的性质,勾股定理,熟练旋转的性质是本题的关键.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)依据△ABC绕着点C顺时针旋转90°,即可画出旋转后对应的△A1B1C1;(2)依据弧长计算公式,即可得到弧BB1的长.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)弧BB1的长为:=.【点睛】本题主要考查作图-旋转变换,以及弧长公式,解题的关键是熟练掌握旋转变换的性质及弧长公式.20、(1)图见解析;(2)图见解析,2.【分析】(1)根据菱形面积公式可得,底边AB的高为4,结合AD=5即可得到点D的坐标,同理得到点C的坐标,连接A,C,D即可.(2)作线段EF的中线与网格交于G、H,且,依次连接E、G、F、H即可,利用正方形面积公式即可求得正方形的面积.【详解】解:(1)根据菱形面积公式可得,底边AB的高为4,结合AD=5即可得到点D的坐标,同理得到点C的坐标,连接A,C,D.如图所示.(2)作线段EF的中线与网格交于G、H,且,依次连接E、G、F、H即可,如图所示.正方形面积为2.【点睛】本题考查了网格作图的问题,掌握菱形的性质以及面积公式、正方形的性质以及面积公式、勾股定理是解题的关键.21、(1)抽样调查;12;3;(2)60;(3).【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.试题解析:(1)抽样调查,所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.22、(1)(2)或【分析】(1)把A坐标代入一次函数解析式求出a的值,确定出A的坐标,再代入反比例解析式求出k的值,即可确定出反比例解析式;(2)解析式联立求得B的坐标,然后根据图象即可求得.【详解】解:(1)∵点在一次函数图象上,∴∴∴∵点在反比例函数的图象上,∴.∴(2)由或∴由图象可知,的解集是或.

【点睛】本题考查了反比例函数与一次函数的交点问题、一次函数图象上点的坐标特征以及反比例函数图象上点的坐标特征,根据一次函数图象上点的坐标特征求出点A、B的坐标是解题的关键.23、(1)是的切线,理由详见解析;(2)【分析】(1)根据题意连接,利用平行四边形的判定与性质进行分析证明即可;(2)由题意作于,连接,根据平行四边形的性质以及勾股定理进行分析求解.【详解】解:是的切线.理由如下.连接,如下图,是平行四边形,是的切线作于,连接,如上图,由,是平行四边形【点睛】本题考查平行四边形和圆相关,熟练掌握平行四边形的判定与性质以及圆的相关性质是解题的关键.24、(1)y=(x-1)2-4;(2)点G坐标为(3.6,2.76),S△FHG=6.348;(3)m=0.6,四边形CDPQ为平行四边形,理由见解析.【分析】(1)利用顶点式求解即可,(2)将G点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH,交x轴于点R,由平行线的性质得证明△AQR∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m中,即可证明四边形CDPQ为平行四边形.【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y轴交于点E(0,),顶点为C(1,),∴y=a(x-1)2-4,代入E(0,),解得a=1,()(2)设G[a,0.6(a+1)],代入函数关系式,得,,解得a1=3.6,a2=-1(舍去),所以点G坐标为(3.6,2.76).S△FHG=6.348(3)y=mx+m=m(x+1),当x=-1时,y=0,所以直线y=mx+m延长QH,交x轴于点R,由平行线的性质得,QR⊥x轴.因为FH∥x轴,所以∠QPH=∠QAR,因为∠PHQ=∠ARQ=90°,所以△AQR∽△PQH,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论