版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.﹣3 B.﹣1 C.2 D.32.如图,等边△ABC的边长为6,P为BC上一点,BP=2,D为AC上一点,若∠APD=60°,则CD的长为()A.2 B.43 C.233.将二次函数化为的形式,结果为()A. B.C. D.4.如图,直线l和双曲线y=(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A.S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S35.学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为()A. B. C. D.6.如图,过点、,圆心在等腰的内部,,,,则的半径为()A. B. C. D.7.如图所示几何体的主视图是()A. B. C. D.8.正十边形的外角和为()A.180° B.360° C.720° D.1440°9.一元二次方程的二次项系数、一次项系数分别是A.3, B.3,1 C.,1 D.3,610.如图所示,在边长为1的小正方形网格中,两个三角形是位似图形,则它们的位似中心是()A.点O B.点P C.点M D.点N11.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n12.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠1二、填空题(每题4分,共24分)13.如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.14.如图,转盘中个扇形的面积都相等.任意转动转盘次,当转盘停止转动时,指针落在阴影部分的概率为________.15.如图,一艘轮船从位于灯塔的北偏东60°方向,距离灯塔60海里的小岛出发,沿正南方向航行一段时间后,到达位于灯塔的南偏东45°方向上的处,这时轮船与小岛的距离是__________海里.16.已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是________.17.如图,中,点在边上.若,,,则的长为______.18.分式方程的解为______________.三、解答题(共78分)19.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B
70≤x<80
30
aC
80≤x<90
b
0.45D
90≤x<100
8
0.08请根据所给信息,解答以下问题:(1)表中a=______,b=______;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.20.(8分)在平面直角坐标系中,抛物线经过点A、B、C,已知A(-1,0),B(3,0),C(0,-3).(1)求此抛物线的函数表达式;(2)若P为线段BC上一点,过点P作轴的平行线,交抛物线于点D,当△BCD面积最大时,求点P的坐标;(3)若M(m,0)是轴上一个动点,请求出CM+MB的最小值以及此时点M的坐标.21.(8分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)22.(10分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:△AFD∽△CFE.23.(10分)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE=105°.(1)求∠CAD的度数;(2)若⊙O的半径为4,求弧BC的长.24.(10分)意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百.分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,1.八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a=;b=;c=;d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人?(3)你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.25.(12分)已知关于x的一元二次方程.(1)求证:无论k取何值,方程总有两个实数根;(2)若二次函数的图象与轴两个交点的横坐标均为整数,且k为整数,求k的值.26.已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(1)试判断上述方程根的情况.(2)已知△ABC的两边AB、AC的长是关于上述方程的两个实数根,BC的长为5,当k为何值时,△ABC是等腰三角形.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据一元二次方程根与系数的关系即可得出答案.【详解】由根与系数的关系得故选:A.【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.2、B【解析】由等边三角形的性质结合条件可证明△ABP∽△PCD,由相似三角形的性质可求得CD.【详解】∵△ABC为等边三角形,∴∠B=∠C=60又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BPCD∵AB=BC=6,BP=2,∴PC=4,∴2CD∴CD=4故选:B.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.3、D【分析】化,再根据完全平方公式分解因式即可.【详解】∵∴故选D.【点睛】解答本题的关键是熟练掌握完全平方公式:,注意当二次项系数为1时,常数项等于一次项系数一半的平方.4、D【分析】根据双曲线的解析式可得所以在双曲线上的点和原点形成的三角形面积相等,因此可得S1=S2,设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M,则可得△OP1M的面积等于S1和S2,因此可比较的他们的面积大小.【详解】根据双曲线的解析式可得所以可得S1=S2=设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M因此而图象可得所以S1=S2<S3故选D【点睛】本题主要考查双曲线的意义,关键在于,它代表的就是双曲线下方的矩形的面积.5、C【解析】分析:根据题意得△AOB∽△COD,根据相似三角形的性质可求出CD的长.详解:∵,,∴∠ABO=∠CDO,∵∠AOB=∠COD,∴△AOB∽△COD,∴∵AO=4m,AB=1.6m,CO=1m,∴.故选C.点睛:本题考查了相似三角形的判定与性质,正确得出△AOB∽△COD是解题关键.6、A【分析】连接AO并延长,交BC于D,连接OB,根据垂径定理得到BD=BC=3,根据等腰直角三角形的性质得到AD=BD=3,根据勾股定理计算即可.【详解】解:连接AO并延长,交BC于D,连接OB,∵AB=AC,∴AD⊥BC,∴BD=BC=3,∵△ABC是等腰直角三角形,∴AD=BD=3,∴OD=2,∴OB=,故选:A.【点睛】本题考查的是垂径定理,等腰直角三角形的性质,以及勾股定理等知识,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.7、C【解析】根据主视图的定义即可得出答案.【详解】从正面看,共有两列,第一列有两个小正方形,第二列有一个小正方形,在下方,只有选项C符合故答案选择C.【点睛】本题考查的是三视图,比较简单,需要熟练掌握三视图的画法.8、B【分析】根据多边的外角和定理进行选择.【详解】解:因为任意多边形的外角和都等于360°,
所以正十边形的外角和等于360°,.
故选B.【点睛】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.9、A【分析】根据一元二次方程的定义解答.【详解】3x2−6x+1=0的二次项系数是3,一次项系数是−6,常数项是1.故答案选A.【点睛】本题考查的知识点是一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的一般形式.10、B【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【详解】解:位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心(如图)在M、N所在的直线上,点P在直线MN上,所以点P为位似中心.
故选:B.【点睛】此题主要考查了位似变换的性质,利用位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,得出位似中心在M、N所在的直线上是解题关键.11、D【解析】根据反比例函数的性质,可得答案.【详解】∵y=−的k=-2<1,图象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正确;故选D.【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.12、D【分析】根据方程有两个不相等的实数根,得到一元二次方程的二次项系数不为零、根的判别式的值大于零,从而列出关于的不等式组,求出不等式组的解集即可得到的取值范围.【详解】根据题意得:,且,解得:,且.故选:D.【点睛】本题考查了一元二次方程的定义以及根的判别式,能够准确得到关于的不等式组是解决问题的关键.二、填空题(每题4分,共24分)13、【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】设A坐标为(x,y),∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0-3,解得:x=-2,y=-3,即A(-2,-3),设过点A的反比例解析式为y=,把A(-2,-3)代入得:k=6,则过点A的反比例解析式为y=,故答案为y=.【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.14、【分析】根据古典概型的概率的求法,求指针落在阴影部分的概率.【详解】一般地,如果在一次试验中,有种可能的结果,并且它们发生的可能性都相等,事件包含其中的中结果,那么事件发生的概率为.图中,因为6个扇形的面积都相等,阴影部分的有3个扇形,所以指针落在阴影部分的概率是.【点睛】本题考查古典概型的概率的求法.15、(30+30)【分析】过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在Rt△BCD中求出BD,相加可得AB的长.【详解】解:过C作CD⊥AB于D点,由题意可得,
∠ACD=30°,∠BCD=45°,AC=1.
在Rt△ACD中,cos∠ACD=,∴AD=AC=30,CD=AC•cos∠ACD=1×,在Rt△DCB中,∵∠BCD=∠B=45°,
∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与小岛A的距离是(30+30)海里.
故答案为:(30+30).【点睛】此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.16、.【分析】根据三角形的任意两边之和大于第三边判断出a最小为2,b最小是3,再根据二次函数的增减性和对称性判断出对称轴小于2.5,然后列出不等式求解即可:【详解】解:∵正整数a,b,c恰好是一个三角形的三边长,且a<b<c,∴a最小是2,b最小是3.∴根据二次函数的增减性和对称性知,的对称轴的左侧,∵,∴.∴实数m的取值范围是.考点:1.二次函数图象上点的坐标特征;2.二次函数的性质;3.三角形三边关系.17、【分析】根据相似三角形对应边成比例即可求得答案.【详解】,,,,,解得:故答案为:【点睛】本题考查了相似三角形的性质,找准对应边是解题的关键.18、;【解析】方程两边都乘以(x+2)(x-2)得到x(x+2)-2=(x+2)(x-2),解得x=-1,然后进行检验确定分式方程的解.【详解】解:去分母得x(x+2)-2=(x+2)(x-2),
解得x=-1,
检验:当x=-1时,(x+2)(x-2)≠0,
所以原方程的解为x=-1.
故答案为x=-1.【点睛】本题考查解分式方程:先去分母,把分式方程转化为整式方程,再解整式方程,然后把整式方程的解代入分式方程进行检验,最后确定分式方程的解.三、解答题(共78分)19、(1)0.3,45;(2)108°;(3).【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20、(1);(2)P(,),面积最大为;(3)CM+MB最小值为,M(,0)【分析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,设P(a,a-3),得出PD的长,列出S△BDC的表达式,化简成顶点式,即可求解;(3)取G点坐标为(0,),过M点作MB′⊥BG,用B′M代替BM,即可得出最小值的情况,再将直线BG、直线B′C的解析式求出,求得M点坐标和∠CGB的度数,再根据∠CGB的度数利用三角函数得出最小值B′C的值.【详解】解:(1)∵抛物线经过点A、B、C,A(-1,0),B(3,0),C(0,-3),代入表达式,解得a=1,b=-2,c=-3,∴故该抛物线解析式为:.(2)令,
∴x1=-1,x2=3,
即B(3,0),
设直线BC的解析式为y=kx+b′,将B、C代入得:k=,1,b′=-3,∴直线BC的解析式为y=x-3,设P(a,a-3),则D(a,a2-2a-3),∴PD=(a-3)-(a2-2a-3)=-a2+3aS△BDC=S△PDC+S△PDB=PD×3=,∴当a=时,△BDC的面积最大,且为为,此时P(,);(3)如图,取G点坐标为(0,),连接BG,过M点作MB′⊥BG,∴B′M=BM,当C、M、B′在同一条直线上时,CM+MB最小.可求得直线BG解析式为:,∵B′C⊥BG故直线B′C解析式为为,令y=0,则x=,∴B′C与x轴交点为(,0)∵OG=,OB=3,∴∠CGB=60°,∴B′C=CGsin∠CGB==,综上所述:CM+MB最小值为,此时M(,0).【点睛】此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.21、这棵树CD的高度为8.7米【解析】试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.试题解析:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.考点:解直角三角形的应用22、(1)证明见解析;(2)证明见解析.【分析】(1)根据两组对角对应相等的两个三角形相似证明即可;
(2)根据直角三角形的性质得到CE=BE=AE,根据等腰三角形的性质得到∠EAC=∠ECA,推出AD∥CE即可解决问题;【详解】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=BE=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD,∴△AFD∽△CFE.【点睛】本题考查的是相似三角形的判定和性质、平行线的判定,掌握相似三角形的判定定理和性质定理是解题的关键.23、(1)∠CAD=35°;(2).【分析】(1)由AB=AC,得到=,求得∠ABC=∠ACB,推出∠CAD=∠ACD,得到∠ACB=2∠ACD,于是得到结论;(2)根据平角的定义得到∠BAC=40°,连接OB,OC,根据圆周角定理得到∠BOC=80°,根据弧长公式即可得到结论.【详解】(1)∵AB=AC,∴=,∴∠ABC=∠ACB,∵D为的中点,∴=,∴∠CAD=∠ACD,∴=2,∴∠ACB=2∠ACD,又∵∠DAE=105°,∴∠BCD=105°,∴∠ACD=×105°=35°,∴∠CAD=35°;(2)∵∠DAE=105°,∠CAD=35°,∴∠BAC=180°-∠DAE-∠CAD=40°,连接OB,OC,∴∠BOC=80°,∴弧BC的长==.【点睛】本题考查了三角形的外接圆和外心,圆心角、弧、弦的关系和圆周角定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.24、(1)11,10,78.5,81;(2)600人;(3)八年级学生总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可).【分析】(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.【详解】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,72,73,75,75,75,76,1,1,78,79,80,80,81,83,85,86,87,94,∴其中位数c==78.5,八年级成绩的众数d=81,故答案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市绿化合同管理办法
- 宗教艺术博物馆管理办法
- 一站式工程维护服务承诺书
- 车辆限号管理办法
- 美容院实习生转正合同
- 城市供电设施拆迁电力保障
- 生态养殖场养猪场租赁
- 城市绿化箱涵施工合同
- 产品售后服务承诺书协议书
- 建筑照明工程合同
- 走中国工业化道路的思想及成就
- ESTIC-AU40使用说明书(中文100版)(共138页)
- 河北省2012土建定额说明及计算规则(含定额总说明)解读
- Prolog语言(耐心看完-你就入门了)
- 保霸线外加电流深井阳极地床阴极保护工程施工方案
- 蓝色商务大气感恩同行集团公司20周年庆典PPT模板
- 恒温箱PLC控制系统毕业设计
- 雍琦版 《法律逻辑学》课后习题答案
- 176033山西《装饰工程预算定额》定额说明及计算规则
- 新技术、新材料、新工艺”试点输电线路建设的通知国家电网
- 水泵试运转记录表
评论
0/150
提交评论