山东省德州庆云县联考2022-2023学年九年级数学第一学期期末联考试题含解析_第1页
山东省德州庆云县联考2022-2023学年九年级数学第一学期期末联考试题含解析_第2页
山东省德州庆云县联考2022-2023学年九年级数学第一学期期末联考试题含解析_第3页
山东省德州庆云县联考2022-2023学年九年级数学第一学期期末联考试题含解析_第4页
山东省德州庆云县联考2022-2023学年九年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若,则的值为()A.1 B. C. D.2.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则sin∠BDE的值是()A. B. C. D.3.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)4.关于抛物线y=x2﹣4x+4,下列说法错误的是()A.开口向上B.与x轴有两个交点C.对称轴是直线线x=2D.当x>2时,y随x的增大而增大5.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A. B. C. D.6.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.7.下列说法中正确的是()A.必然事件发生的概率是0B.“任意画一个等边三角形,其内角和是180°”是随机事件C.投一枚图钉,“钉尖朝上”的概率不能用列举法求得D.如果明天降水的概率是50%,那么明天有半天都在下雨8.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>-1 D.-1<m<09.下列四种说法:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②将1010减去它的,再减去余下的,再减去余下的,再减去余下的,……,依此类推,直到最后减去余下的,最后的结果是1;③实验的次数越多,频率越靠近理论概率;④对于任何实数x、y,多项式的值不小于1.其中正确的个数是()A.1 B.1 C.3 D.410.如图,AB是⊙的直径,AC是⊙的切线,A为切点,BC与⊙交于点D,连结OD.若,则∠AOD的度数为()A. B. C. D.11.如图,二次函数的图象经过点,,下列说法正确的是()A. B.C. D.图象的对称轴是直线12.已知⊙O的直径为12cm,如果圆心O到一条直线的距离为7cm,那么这条直线与这个圆的位置关系是()A.相离 B.相切 C.相交 D.相交或相切二、填空题(每题4分,共24分)13.一元二次方程的根是_____.14.如图,在△ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC上,顶点D、G分别在边AB、AC上.设DE,矩形DEFG的面积为,那么关于的函数关系式是______.(不需写出x的取值范围).15.抛物线y=﹣x2+bx+c的部分图象如图所示,已知关于x的一元二次方程﹣x2+bx+c=0的一个解为x1=1,则该方程的另一个解为x2=_____.16.已知△ABC的三边长a=3,b=4,c=5,则它的内切圆半径是________17.若关于的一元二次方程有实数根,则的取值范围是_____.18.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.三、解答题(共78分)19.(8分)已知关于x的一元二次方程(k﹣1)x2+4x+1=1.(1)若此方程的一个根为﹣1,求k的值;(2)若此一元二次方程有实数根,求k的取值范围.20.(8分)如图,在△ABC中,利用尺规作图,画出△ABC的内切圆.21.(8分)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.22.(10分)如图,△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)(正方形网格中,每个小正方形的边长为1)(1)画出△ABC向下平移5个单位得到的△A1B1C1,并写出点B1的坐标;(2)以点O为位似中心,在第三象限画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为1:2,直接写出点C2的坐标和△A2B2C2的面积.23.(10分)从﹣1,﹣3,2,4四个数字中任取一个,作为点的横坐标,不放回,再从中取一个数作为点的纵坐标,组成一个点的坐标.请用画树状图或列表的方法列出所有可能的结果,并求该点在第二象限的概率.24.(10分)在中,,,以点为圆心、为半径作圆,设点为⊙上一点,线段绕着点顺时针旋转,得到线段,连接、.(1)在图中,补全图形,并证明.(2)连接,若与⊙相切,则的度数为.(3)连接,则的最小值为;的最大值为.25.(12分)2019年国庆档上映了多部优质国产影片,其中《我和我的祖国》、《中国机长》这两部影片不管是剧情还是制作,都非常值得一看.《中国机长》是根据真实故事改编的,影片中全组机组人员以自己的实际行动捍卫安全、呵护生命,堪称是“新时代的英雄”、“民航奇迹的创造者”,据统计,某地10月1日该影片的票房约为1亿,10月3日的票房约为1.96亿.(1)求该地这两天《中国机长》票房的平均增长率;(2)电影《我和我的祖国》、《中国机长》的票价分别为40元、45元,10月份,某企业准备购买200张不同时段的两种电影票,预计总花费不超过8350元,其中《我和我的祖国》的票数不多于《中国机长》票数的2倍,请求出该企业有多少种购买方案,并写出最省钱的方案及所需费用.26.已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F(1)如图1,求证:BD平分∠ADF;(2)如图2,连接OC,若AC=BC,求证:OC平分∠ACB;(3)如图3,在(2)的条件下,连接AB,过点D作DN∥AC交⊙O于点N,若AB=3,DN=1.求sin∠ADB的值.

参考答案一、选择题(每题4分,共48分)1、D【解析】∵,∴==,故选D2、C【分析】由矩形的性质可得AB=CD,AD=BC,AD∥BC,可得BE=CE=BC=AD,由全等三角形的性质可得AE=DE,由相似三角形的性质可得AF=2EF,由勾股定理可求DF的长,即可求sin∠BDE的值.【详解】∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC∵点E是边BC的中点,∴BE=CE=BC=AD,∵AB=CD,BE=CE,∠ABC=∠DCB=90°∴△ABE≌△DCE(SAS)∴AE=DE∵AD∥BC∴△ADF∽△EBF∴=2∴AF=2EF,∴AE=3EF=DE,∴sin∠BDE=,故选C.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键.3、A【分析】利用位似图形的性质和两图形的位似比,并结合点A的坐标即可得出C点坐标.【详解】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选A.【点睛】本题主要考查位似变换、坐标与图形性质,解题的关键是结合位似比和点A的坐标.4、B【分析】把二次函数解析式化为顶点式,逐项判断即可得出答案.【详解】∵y=x2﹣4x+4=(x﹣2)2,∴抛物线开口向上,对称轴为x=2,当x>2时,y随x的增大而增大,∴选项A、C、D说法正确;令y=0可得(x﹣1)2=0,该方程有两个相等的实数根,∴抛物线与x轴有一个交点,∴B选项说法错误.故选:B.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,掌握二次函数的顶点式是解答本题的关键,即在y=a(x﹣h)2+k中,其对称轴为x=h,顶点坐标为(h,k).5、D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此,所以B选项不成立;C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.6、B【分析】中心对称图形绕某一点旋转180°后的图形与原来的图形重合,轴对称图形被一条直线分割成的两部分沿着对称轴折叠时,互相重合,据此逐一判断出既是轴对称图形又是中心对称图形的是哪个即可.【详解】A是轴对称图形,不是中心对称图形,故选项错误;B既是轴对称图形,又是中心对称图形,故选项正确;C不是轴对称图形,是中心对称图形,故选项错误;D不是轴对称图形,是中心对称图形,故选项错误;故选B【点睛】本题考查了轴对称图形和中心对称图形的判断,掌握其定义即可快速判断出来.7、C【分析】根据必然事件、随机事件的概念以及概率的求解方法依次判断即可.【详解】解:A、必然事件发生的概率为1,故选项错误;B、“任意画一个等边三角形,其内角和是180°”是必然事件,故选项错误;C、投一枚图钉,“钉尖朝上”和“钉尖朝下”不是等可能事件,因此概率不能用列举法求得,选项正确;D、如果明天降水的概率是50%,是表示降水的可能性,与下雨时长没关系,故选项错误.故选:C.【点睛】本题考查了必然事件、随机事件和概率的理解,掌握概率的有关知识是解题的关键.8、B【分析】利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.【详解】顶点坐标(m,m+1)在第一象限,则有解得:m>0,故选B.考点:二次函数的性质.9、C【分析】画图可判断①;将②转化为算式的形式,求解判断;③是用频率估计概率的考查;④中配成平方的形式分析可得.【详解】如下图,∠1=∠1,∠1+∠3=180°,即两边都平行的角,可能相等,也可能互补,①错误;②可用算式表示为:,正确;实验次数越多,则频率越接近概率,③正确;∵≥0,≥0∴≥1,④正确故选:C【点睛】本题考查平行的性质、有理数的计算、频率与概率的关系、利用配方法求最值问题,注意②中,我们要将题干文字转化为算式分析.10、C【分析】由AC是⊙的切线可得∠CAB=,又由,可得∠ABC=40;再由OD=OB,则∠BDO=40最后由∠AOD=∠OBD+∠OBD计算即可.【详解】解:∵AC是⊙的切线∴∠CAB=,又∵∴∠ABC=-=40又∵OD=OB∴∠BDO=∠ABC=40又∵∠AOD=∠OBD+∠OBD∴∠AOD=40+40=80故答案为C.【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.11、D【分析】根据二次函数的图像与性质即可求解.【详解】由图象可知图象与y轴交点位于y轴正半轴,故c>0.A选项错误;函数图象与x轴有两个交点,所以>0,B选项错误;观察图象可知x=-1时y=a-b+c>0,所以a-b+c>0,C选项错误;根据图象与x轴交点可知,对称轴是(1,0).(5,0)两点的中垂线,,x=3即为函数对称轴,D选项正确;故选D【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像.12、A【分析】这条直线与这个圆的位置关系只要比较圆心到直线的距离与半径的大小关系即可.【详解】∵⊙O的直径为12cm,∴⊙O的半径r为6cm,如果圆心O到一条直线的距离d为7cm,d>r,这条直线与这个圆的位置关系是相离.故选择:A.【点睛】本题考查直线与圆的位置关系问题,掌握点到直线的距离与半径的关系是关键.二、填空题(每题4分,共24分)13、【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【详解】解:或,所以.故答案为.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.14、;【分析】根据题意和三角形相似,可以用含的代数式表示出,然后根据矩形面积公式,即可得到与的函数关系式.【详解】解:四边形是矩形,,上的高,,矩形的面积为,,,,得,,故答案为:.【点睛】本题考查根据实际问题列二次函数关系式、相似三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.15、﹣1【分析】函数的对称轴为:x=-1,由抛物线与x轴交点是关于对称轴的对称即可得到答案.【详解】解:函数的对称轴为:x=-1,其中一个交点坐标为(1,0),

则另外一个交点坐标为(-1,0),

故答案为-1.【点睛】本题考查了抛物线与x轴的交点,根据函数的对称性即可求解.16、1【解析】∵a=3,b=4,c=5,∴a2+b2=c2,∴∠ACB=90°,设△ABC的内切圆切AC于E,切AB于F,切BC于D,连接OE、OF、OD、OA、OC、OB,内切圆的半径为R,则OE=OF=OD=R,∵S△ACB=S△AOC+S△AOB+S△BOC,∴×AC×BC=×AC×OE+×AB×OF+×BC×OD,∴3×4=4R+5R+3R,解得:R=1.故答案为1.17、且k≠1.【分析】根据一元二次方程的定义和判别式的意义得到且,然后求出两个不等式的公共部分即可.【详解】解:根据题意得且,

解得:且k≠1.

故答案是:且k≠1.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2-4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.18、.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】共个数,大于的数有个,(大于);故答案为.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三、解答题(共78分)19、(2);(2)且.【分析】(2)把x=﹣2代入原方程求k值;(2)一元二次方程的判别式是非负数,且二次项系数不等于2.【详解】解:(2)将x=﹣2代入一元二次方程(k﹣2)x2+4x+2=2得,(k﹣2)﹣4+2=2,解得k=4;(2)∵若一元二次方程(k﹣2)x2+4x+2=2有实数根,∴△=26﹣4(k﹣2)≥2,且k﹣2≠2解得k≤5且k﹣2≠2,即k的取值范围是k≤5且k≠2.20、见解析【分析】分别作出三角形两个内角的角平分线,交点即为三角形的内心,也就是三角形内切圆的圆心,进而得出即可.【详解】如图所示【点睛】此题主要考查了复杂作图,正确把握三角形内心位置确定方法是解题关键.21、(1)正方形、矩形、直角梯形均可;(1)①证明见解析②证明见解析【分析】(1)根据定义和特殊四边形的性质,则有矩形或正方形或直角梯形;(1)①首先证明△ABC≌△DBE,得出AC=DE,BC=BE,连接CE,进一步得出△BCE为等边三角形;②利用等边三角形的性质,进一步得出△DCE是直角三角形,问题得解.【详解】解:(1)正方形、矩形、直角梯形均可;(1)①∵△ABC≌△DBE,∴BC=BE,∵∠CBE=60°,∴△BCE是等边三角形;②∵△ABC≌△DBE,∴BE=BC,AC=ED;∴△BCE为等边三角形,∴BC=CE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,在Rt△DCE中,DC1+CE1=DE1,∴DC1+BC1=AC1.考点:四边形综合题.22、(1)见解析,(2,﹣3);(2)见解析,1.1.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用位似图形的性质得出对应点位置进而结合三角形面积求法得出答案.【详解】解:(1)如图所示:△A1B1C1,即为所求;点B1的坐标为:(2,﹣3);(2)如图所示:△A2B2C2,即为所求;点C2的坐标为:(﹣2,﹣3);△A2B2C2的面积为:4﹣×1×1﹣×1×2﹣×1×2=1.1..【点睛】此题主要考查了平移变换以及位似变换,正确得出对应点位置是解题关键.23、表见解析,【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.【详解】解:列表如下:﹣3﹣124﹣3﹣﹣﹣(﹣1,﹣3)(2,﹣3)(4,﹣3)﹣1(﹣3,﹣1)﹣﹣﹣(2,﹣1)(4,﹣1)2(﹣3,2)(﹣1,2)﹣﹣﹣(4,2)4(﹣3,4)(﹣1,4)(2,4)﹣﹣﹣所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有4种,∴该点在第二象限的概率为=.【点睛】本题主要考查了列表法或树状图法求概率,熟练的用列表法或树状图法列出所有的情况数是解题的关键.24、(1)证明见解析;(2)或;(3)【分析】(1)根据题意,作出图像,然后利用SAS证明,即可得到结论;(2)根据题意,由与⊙相切,得到∠BMN=90°,结合点M的位置,即可求出的度数;(3)根据题意,当点N恰好落在线段AB上时,BN的值最小;当点N落在BA延长线上时,BN的值最大,分别求出BN的值,即可得到答案.【详解】解:(1)如图,补全图形,证明:,∵,,;(2)根据题意,连接MN,∵与⊙相切,∴∠BMN=90°,∵△MNC是等腰直角三角形,∴∠CMN=45°,如上图所示,∠BMC=;如上图所示,∠BMC=;综合上述,的度数为:或;故答案为:或;(3)根据题意,当点N恰好落在线段AB上时,BN的值最小;如图所示,∵AN=BM=1,∵,∴;当点N落在BA延长线上时,BN的值最大,如图所示,由AN=BN=1,∴BN=BA+AN=2+1=3;∴的最小值为1;的最大值为3;故答案为:1,3.【点睛】本题考查了圆的性质,全等三角形的旋转模型,等腰直角三角形的判定和性质,以及勾股定理,解题的关键是熟练掌握圆的动点问题,注意利用数形结合和分类讨论的思想进行解题.25、(1)该地这两天《中国机长》票房的平均增长率为40%;(2)最省钱的方案为购买《我和我的祖国》133张,《中国机长》67张,所需费用为8335元【分析】(1)根据题意列出增长率的方程解出即可.(2)根据题意列出不等式组,解出a的正整数值,再根据方案判断即可.【详解】(1)设该地这两天《中国机长》票房的平均增长率为x.根据题意得:1×(1+x)2=1.96解得:x1=0.4,x2=﹣2.4(舍)答:该地这两天《中国机长》票房的平均增长率为40%.(2)设购买《我和我的祖国》a张,则购买《中国机长》(200﹣a)张根据题意得:解得:130≤a≤∵a为正整数∴a=130,131,132,133∴该企业共有4种购买方案,购买《我和我的祖国》133张,《中国机长》67张时最省钱,费用为:40×133+45×67=8335(元).答:最省钱的方案为购买《我和我的祖国》133张,《中国机长》67张,所需费用为8335元.【点睛】本题考查一元二次方程的应用、不等式组的应用,关键在于理解题意列出方程.26、(1)证明见解析;(2)证明见解析;(3)sin∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论