版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年安徽省铜陵市普通高校对口单招数学自考测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(CUA)∩(CUB)=()A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}
2.已知全集U=R,集合A={x|x>2},则CuA=()A.{x|x≤1}B.{x|x<1}C.{x|x<2}D.{x|x≤2}
3.若lgx<1,则x的取值范围是()A.x>0B.x<10C.x>10D.0<x<10
4.tan150°的值为()A.
B.
C.
D.
5.“a=0”是“a2+b2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
6.已知过点A(0,-1),点B在直线x-y+1=0上,直线AB的垂直平分线x+2y-3=0,则点B的坐标是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)
7.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是()A.
B.
C.
D.
8.若向量A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)
9.已知平面向量a=(1,3),b(-1,1),则ab=A.(0,4)B.(-1,3)C.0D.2
10.A.10B.5C.2D.12
11.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2
B.2
C.
D.
12.某商品降价10%,欲恢复原价,则应提升()A.10%
B.20%
C.
D.
13.函数f(x)=log2(3x-1)的定义域为()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)
14.拋物线y2-4x+17=0的准线方程是()A.x=2B.x=-2C.x=1D.x=-1
15.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-11
16.直线:y+4=0与圆(x-2)2+(y+l)2=9的位置关系是()
A.相切B.相交且直线不经过圆心C.相离D.相交且直线经过圆心
17.A.B.C.
18.A.-1B.-4C.4D.2
19.根据如图所示的框图,当输入z为6时,输出的y=()A.1B.2C.5D.10
20.下列命题是真命题的是A.B.C.D.
二、填空题(10题)21.
22.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是______.
23.以点(1,0)为圆心,4为半径的圆的方程为_____.
24.
25.
26.设A(2,-4),B(0,4),则线段AB的中点坐标为
。
27.
28.
29.
30.设A=(-2,3),b=(-4,2),则|a-b|=
。
三、计算题(10题)31.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
32.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
33.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
34.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
35.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
36.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
37.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
38.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
39.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
40.解不等式4<|1-3x|<7
四、简答题(10题)41.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积
42.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
43.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.
44.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
45.已知的值
46.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.
47.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
48.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点
49.解不等式组
50.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
五、解答题(10题)51.若x∈(0,1),求证:log3X3<log3X<X3.
52.
53.已知椭圆的两焦点为F1(-1,0),F2(1,0),P为椭圆上的一点,且2|F1F2|PF1|+|PF2|.(1)求此椭圆的标准方程;(2)若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.
54.某学校高二年级一个学习兴趣小组进行社会实践活动,决定对某“著名品牌”A系列进行市场销售量调研,通过对该品牌的A系列一个阶段的调研得知,发现A系列每日的销售量f(x)(单位:千克)与销售价格x(元/千克)近似满足关系式f(x)=a/x-4+10(1-7)2其中4<x<7,a为常数.已知销售价格为6元/千克时,每日可售出A系列15千克.(1)求函数f(x)的解析式;(2)若A系列的成本为4元/千克,试确定销售价格x的值,使该商场每日销售A系列所获得的利润最大.
55.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
56.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
57.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2,且|F1F2|=2,点(1,3/2)在该椭圆上.(1)求椭圆C的方程;(2)过F1的直线L与椭圆C相交于A,B两点,以F2为圆心为半径的圆与直线L相切,求△AF2B的面积.
58.设函数f(x)=x3-3ax+b(a≠0).(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值;(2)求函数f(x)的单调区间与极值点.
59.
60.
六、单选题(0题)61.将三名教师排列到两个班任教的安排方案数为()A.5B.6C.8D.9
参考答案
1.B集合补集,交集的运算.因为CuA={2,4,6,7,9},CuB={0,1,3,7,9},所以(CuA)∩(CuB)={7,9}.
2.D补集的计算.由A={x|x>2},全集U=R,则CuA={x|x≤2}
3.D对数的定义,不等式的计算.由lgx<1得,所以0<x<10.
4.B三角函数诱导公式的运用.tan150°=tan(180°-30°)=-tan30°=
5.B命题的判定.若a2+b2=0,则a=b=0;若a=0,则a2+b2不一定等于0.
6.B由于B在直线x-y+1=0上,所以可以设B的坐标为(x,x+1),AB的斜率为,垂直平分线的斜率为,所以有,因此点B的坐标为(2,3)。
7.C几何体的三视图.由题意知,俯视图的长度和宽度相等,故C不可能.
8.A向量的运算.=(l,2)+(3,4)=(4,6).
9.D
10.A
11.D
12.C
13.A函数的定义.由3x-1>0,得3x>1,即3x>30,∴x>0.
14.D
15.C圆与圆相切的性质.圆C1的圆心C1(0,0),半径r1=1,圆C2的方程可化为(x-3)2+(y-4)2=25-m,所以圆心C2(3,4),
16.A直线与圆的位置关系.圆心(2,-1)到直线y=-4的距离为|-4-(-1)|=3,而圆的半径为3,所以直线与圆相切,
17.A
18.C
19.D程序框图的运算.输入x=6.程序运行情况如下:x=6-3=3>0,x=3-3=0≥0,x=0-3=-3<0,退出循环,执行:y=x2+1=(-3)2+1=10,输出y=10.
20.A
21.{x|1<=x<=2}
22.1/3古典概型及概率计算公式.两个红球的编号为1,2两个白球的编号为3,4,任取两个的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),两球颜色相同的事件有(1,2)和(3,4),故两球颜色相同概率为2/6=1/3
23.(x-1)2+y2=16圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16
24.2
25.45
26.(1,0)由题可知,线段AB的中点坐标为x=(2+0)/2=1,y=(-4+4)/2=0。
27.x+y+2=0
28.外心
29.λ=1,μ=4
30.
。a-b=(2,1),所以|a-b|=
31.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
32.
33.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
34.
35.
36.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
37.
38.
39.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
40.
41.
42.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
43.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴数列为首项b1=32,q=16的等比数列
44.(1)(2)
45.
∴∴则
46.(1)∵
∴又∵等差数列∴∴(2)
47.
48.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点
49.x2-6x+8>0,∴x>4,x<2(1)(2)联系(1)(2)得不等式组的解集为
50.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为
51.
52.
53.
54.(1)由题意可知,当x=6时,f(x)=15,即a/2+10=15,解得a=10,所以f(x)=10f(x-4)++10(x-7)2.(2)设该商场每日销售A系列所获得的利润为h(x),h(x)=(x-4)[10/x-4+10(x-7)2]=10x3-180x2+1050x-1950(4<x<7),h(x)=30x2-360x+1050,令h(x)=30x2-360x+1050=0,得x=5或x=7(舍去),所以当4<x<5时,h(x)>0,h(x)在(4,5]为增函数;当5<x<7,h(x)<0,h(x)在[5,7)为减函数,故当x=5时,函数h(x)在区间(4,7)内有极大值点,也是最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 16971-1:2024 EN Ophthalmic instruments - Optical coherence tomographs - Part 1: Optical coherence tomographs for the posterior segment of the human eye
- 淮阴师范学院《土壤污染及其防治》2023-2024学年第一学期期末试卷
- 淮阴师范学院《中学音乐课教学案例分析》2023-2024学年第一学期期末试卷
- 淮阴师范学院《初等数学研究》2023-2024学年第一学期期末试卷
- DB2310-T 140-2024牡丹江地区森林可持续经营规程
- 宝石中英对照词汇-总和
- 春节前安全检查与培训考核试卷
- 油炸食品制造业中的员工健康与安全管理考核试卷
- 打印技术在建筑领域的应用考核试卷
- 广东省广州市白云区2024-2025学年四年级上学期期中英语试卷
- 部编版道德与法治 四年级上册 单元作业设计《为父母分担》
- 核酸的生物合成 完整版
- 第一章-教育及其本质
- 天然气巡检记录表
- 食品进货台账制度范本(3篇)
- 甲苯磺酸瑞马唑仑临床应用
- 中国古代文学史PPT完整PPT完整全套教学课件
- 车牌识别一体机安装调试教程
- Python语言学习通超星课后章节答案期末考试题库2023年
- 海报设计教学课件完整版讲课讲稿
- 年产30万吨碳酸钙粉建设项目可行性研究报告
评论
0/150
提交评论