河南省漯河市临颍县职业高级中学2021年高二数学文下学期期末试卷含解析_第1页
河南省漯河市临颍县职业高级中学2021年高二数学文下学期期末试卷含解析_第2页
河南省漯河市临颍县职业高级中学2021年高二数学文下学期期末试卷含解析_第3页
河南省漯河市临颍县职业高级中学2021年高二数学文下学期期末试卷含解析_第4页
河南省漯河市临颍县职业高级中学2021年高二数学文下学期期末试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省漯河市临颍县职业高级中学2021年高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度参考答案:B考点:反证法与放缩法.专题:常规题型.分析:一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.解答:解:根据反证法的步骤,假设是对原命题结论的否定,“至少有一个”的否定:“一个也没有”;即“三内角都大于60度”.故选B点评:本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.2.设,若对于任意,总存在,使得成立,则的取值范围是

)(A)

(B)

(C)

(D)参考答案:C3.若,则的取值范围是()A.[0,2] B.[-2,0]C.[-2,+∞)

D.(-∞,-2]参考答案:D4.函数的单调递增区间是(

)A

B(0,3)

C(1,4)

D参考答案:D略5.直线过点且与以为端点的线段相交,则的斜率的取值范围是()A.

B.

C.D.参考答案:D6.若CA=42,则=()A.7 B.8 C.35 D.40参考答案:C【考点】D5:组合及组合数公式.【分析】根据组合数、排列数公式求出n的值,再代入计算的值.【解答】解:∵CA=×2=42,∴n2﹣n﹣42=0,解得n=7或n=﹣6(不合题意,舍去);∴===35.故选:C.7.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是(

)A.16π B.20π C.24π D.32π参考答案:C【分析】根据正四棱柱的底面是正方形,高为4,体积为16,求得底面正方形的边长,再求出其对角线长,然后根据正四棱柱的体对角线是外接球的直径可得球的半径,再根据球的表面积公式可求得.【详解】依题意正四棱柱的体对角线是其外接球的直径,的中点是球心,如图:依题意设,则正四棱柱的体积为:,解得,所以外接球的直径,所以外接球的半径,则这个球的表面积是.故选C.【点睛】本题考查了球与正四棱柱的组合体,球的表面积公式,正四棱柱的体积公式,属中档题.8.双曲线2x2﹣y2=8的实轴长是(

)A.2 B. C.4 D.参考答案:C【考点】双曲线的标准方程.【专题】计算题.【分析】将双曲线方程化为标准方程,求出实轴长.【解答】解:2x2﹣y2=8即为∴a2=4∴a=2故实轴长为4故选C【点评】本题考查双曲线的标准方程、由方程求参数值.9.已知,则等于(

)A.-4 B.-2 C.1 D.2参考答案:D【分析】首先对f(x)求导,将1代入,求出f′(1)的值,化简f′(x),最后将x=3代入即可.【详解】因f′(x)=2x+2f′(1),令x=1,可得f′(1)=2+2f′(1),∴f′(1)=﹣2,∴f′(x)=2x+2f′(1)=2x﹣4,当x=3,f′(3)=2.故选:D【点睛】本题考查导数的运用,求出f′(1)是关键,是基础题.10.已知直线过点和点,则直线的斜率的最大值为.

参考答案:.

数形结合法:设,则点是圆上的动点,过点,的直线的斜率的最大值为直线与圆相切时的斜率的最大值;设切线方程为即,则圆心到直线的圆距离为;即或舍去;故选.二、填空题:本大题共7小题,每小题4分,共28分11.若复数(为虚数单位)为实数,则实数

.参考答案:1略12.在圆x2+y2﹣2x﹣6y=0内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为.参考答案:10【考点】直线与圆的位置关系.【分析】根据圆的标准方程求出圆心M的坐标和半径,最长的弦即圆的直径,故AC的长为2,最短的弦BD和ME垂直,且经过点E,由弦长公式求出BD的值,再由ABCD的面积为求出结果.【解答】解:圆x2+y2﹣2x﹣6y=0即(x﹣1)2+(y﹣3)2=10表示以M(1,3)为圆心,以为半径的圆.由圆的弦的性质可得,最长的弦即圆的直径,AC的长为2.∵点E(0,1),∴ME==.弦长BD最短时,弦BD和ME垂直,且经过点E,此时,BD=2=2=2.故四边形ABCD的面积为=10,故答案为10.13.展开式中的系数为________。

参考答案:-6

略14.如果复数(其中i是虚数单位)是实数,则实数m=______.参考答案:【分析】将复数转化为的形式,然后再根据复数为实数这一条件,解决的值。【详解】解:,因为复数为实数,所以,故。【点睛】本题考查了复数乘法的运算、定义,解决本题的关键是要将复数转化为的标准形式,进而根据题意进行解题。15.若,且,则_______,_______.参考答案:-1,-5略16.一个体积为的正三棱柱的三视图如图所示,则这个三棱柱的左视图的面积为

.参考答案:17.已知为椭圆的两个焦点,过的直线交椭圆于两点若,则

.参考答案:8三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图所示,一辆汽车从点出发沿一条直线公路以50公里/小时的速度勻速行驶(图中的箭头方向为汽车行驶方向),汽车开动的同时,在距汽车出发点点的距离为5公里,距离公路线的垂直距离为3公里的点的地方有一个人骑摩托车出发想把一件东西送给汽车司机.问骑摩托车的人至少以多大的速度匀速行驶才能实现他的愿望,此时他驾驶摩托车行驶了多少公里?参考答案:作垂直公路所在直线于点,则,设骑摩托车的人的速度为公里/小时,追上汽车的时间为小时由余弦定理:当时,的最小值为,其行驶距离为公里故骑摩托车的人至少以公里/时的速度行驶才能实现他的愿望,他驾驶摩托车行驶了公里.19.如图,四棱柱中,侧棱底面,,,,为棱的中点.(1)证明:;(2)求异面直线与所成角的大小.(结果用反三角函数值表示)

参考答案:略20.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.参考答案:【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(Ⅰ)由频率分布直方图中频率之和为1,能求出a.(Ⅱ)平均分是频率分布直方图各个小矩形的面积×底边中点横坐标之和,由此利用频率分布直方图能求出平均分.(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,则这两名学生的数学成绩之差的绝对值不大于10,由此利用列举法能过河卒子同这两名学生的数学成绩之差的绝对值不大于10的概率.【解答】解:(Ⅰ)由频率分布直方图,得:10×(0.005+0.01+0.025+a+0.01)=1,解得a=0.03.(Ⅱ)由频率分布直方图得到平均分:=0.05×45+0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=74(分).(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,则这两名学生的数学成绩之差的绝对值不大于10,记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,所以这两名学生的数学成绩之差的绝对值不大于10的概率P=.【点评】本题考查频率和概率的求法,二查平均分的求法,是中档题,解题时要认真审题,注意频率分布直方图和列举法的合理运用.21.(本题共10分)将两块三角板按图甲方式拼好,其中,,,,现将三角板沿折起,使在平面上的射影恰好在上,如图乙.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;

参考答案:解:(1)设在的射影为,则平面,,又,平面

,又,平面

……4分(2)由(1),又,

为中点以为轴,为轴,过且与平行的直线为轴建系,则设为平面的法向量,由,可得易知为平面的法向量,因为所求二面角是锐角,所以所求二面角的余弦值为。…

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论