下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省商丘市睢阳区宋集镇联合中学2023年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列说法中,正确的是
(
)①数据4、6、7、7、9、4的众数是4;②一组数据的标准差是这组数据的方差的平方;③数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半;④频率分布直方图中各小长方形的面积等于相应各组的频数;⑤数据4、6、7、7、9、4的中位数是6.5A.①③
B.②④
C.③⑤
D.④⑤参考答案:C略2..若a,b,c均为单位向量,且a·b=0,(a-c)·(b-c)≤0,则|a+b-c|的最大值为()A.-1
B.1C.
D.2参考答案:B3.下列有关命题的说法正确的是
(
) A.“”是“”的充分不必要条件B.“”是“”的必要不充分条件.C.命题“使得”的否定是:“均有”.D.命题“若,则”的逆否命题为真命题.参考答案:D略4.如图,在三棱锥S﹣ABC中,SA=SC=AB=BC,则直线SB与AC所成角的大小是()A.30°B.45°C.60°D.90°参考答案:D5.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A∩CUB=A.{4,5}
B.{2,3}
C.{1}
D.{2}参考答案:C6.下列命题中的假命题是(
)A.
B.
C.
D.参考答案:C略7.已知,则“”是“”的
(
)A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件参考答案:B因为,所以0<a<2;所以“”是“”的必要不充分条件8.在△ABC中,B=135°,C=15°,a=5,则此三角形的最大边长为(
)
A.
B.
C.
D.参考答案:C在△中,,,则此三角形的A=30。且最大边为AC边,由正弦定理,可以求出AC=9.“”是“”的(
)A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件参考答案:B10.如图,是直棱柱,,点,分别是,的中点.若,则与所成角的余弦值为A.
B.
C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.已知△ABC的周长为l,面积为S,则△ABC的内切圆半径为.将此结论类比到空间,已知四面体ABCD的表面积为S,体积为V,则四面体ABCD的内切球的半径R=___.参考答案:试题分析:在平面中,设内切圆的圆心为,半径为,连结,则有,所以,类比到空间可得,设内切球的球心为,半径为,则有所以四面体的内切球的半径为.考点:合情推理中的类比推理.12.设(为有理数),则的值等于
.(用数字作答)参考答案:略13.曲线处的切线与两坐标轴所围成的三角形面积是______________.参考答案:略14.已知正三棱锥V﹣ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=2,则由该三棱锥的表面积为.参考答案:6【考点】由三视图求面积、体积.【分析】由题意:该三棱锥的底面正三角形的边长为2,侧棱长为2,求出各个面的面积,相加即可.【解答】解:正三棱锥V﹣ABC中,侧棱长VA=2,底面三角形的边长AC=2,可得底面面积为:×2×2×sin60°=3,侧面的侧高为:=1,故每个侧面的面积为:×2×1=,故该三棱锥的表面积为3+3×=6.故答案为:6.15.命题“若,则”的逆否命题是
.参考答案:若,则16.函数的定义域是
参考答案:17.直线2x﹣5y﹣10=0与坐标轴所围成的三角形面积是
.参考答案:5【考点】两条直线的交点坐标.【分析】求出直线与坐标轴的交点,即可求解三角形的面积.【解答】解:直线2x﹣5y﹣10=0与坐标轴的交点坐标为(0,﹣2),(5,0),所以直线2x﹣5y﹣10=0与坐标轴所围成的三角形面积是:=5.故答案为:5.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在四棱锥中,平面,四边形是直角梯形,,,.(1)求二面角的余弦值;(2)设是棱上一点,是的中点,若与平面所成角的正弦值为,求线段的长.参考答案:(1)解:以为原点,分别以,,的方向为轴,轴,轴,建立如图所示的空间直角坐标系则由已知可得,,,,,∴,,设平面的一个法向量为,由,得,,∴有解得取,得,,∴∵平面∴取平面的一个法向量为,设二面角的大小为,由图可知,二面角为锐角二面角,∴二面角的余弦值为(2)解:由(1)知,,设(),则,∴,易知平面,∴是平面的一个法向量.设与平面所成的角为,则,即解得或(舍去)∴,∴即线段的长为
19.如图,在四棱锥P-ABCD中PA⊥底面ABCD,为直角,,,E,F分别为PC,CD的中点.(1)试证:CD⊥平面BEF;(2)求BC与平面BEF所成角的大小;(3)求三棱锥的体积.参考答案:(1)证明见解析;(2);(3).【分析】(1)易证得四边形为矩形,从而;利用线面垂直性质可证得,进而得到平面,由线面垂直性质得,由平行关系得,由线面垂直判定定理证得结论;(2)由(1)可知即为所求角;根据四边形为矩形可得到长度关系,从而得到,进而得到结果;(3)利用体积桥可知,利用三棱锥体积公式计算可得结果.【详解】(1),为直角,四边形为矩形
又平面,平面
又,平面,
平面平面
分别为中点
平面,
平面(2)由(1)知,在平面内的射影为即为直线与平面所成角四边形为矩形
在中,
即直线与平面所成角大小为:(3),又为中点
【点睛】本题考查线面垂直关系的证明、直线与平面所成角的求解、三棱锥体积的求解;立体几何中求解三棱锥体积的常用方法是采用体积桥的方式,将问题转化为底面积和高易求的三棱锥体积的求解问题.20.(本小题满分13分)某校伙食长期以面粉和大米为主食,面食每100g含蛋白质6个单位,含淀粉4个单位,售价为0.5元,米食每100g含蛋白质3个单位,含淀粉7个单位,售价0.4元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?参考答案:面食:百克,米食:百克时,既科学又费用最少.21.(满分10分)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=6,b+c=8,求△ABC的面积.参考答案:22.设Sn为数列{an}的前n项和,给出如下数列:①5,3,1,﹣1,﹣3,﹣5,﹣7,…;②﹣14,﹣10,﹣6,﹣2,2,6,10,14,18,….(1)对于数列①,计算S1,S2,S4,S5;对于数列②,计算S1,S3,S5,S7.(2)根据上述结果,对于存在正整数k,满足ak+ak+1=0的这一类等差数列{an}前n项和的规律,猜想一个正确的结论,并加以证明.参考答案:【考点】归纳推理.【分析】(1)直接求和,可得结论;(2)ak+ak+1=0,2a1=(1﹣2k)d,证明S2k﹣n﹣Sn=0即可.【解答】解:(1)对于数列①S1=5,S2=8,S4=8,S5=5;②
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际会议筹备网格化方案
- 词语理解运用(闯关训练)(解析版) -2025年部编版中考语文一轮复习
- 2024-2025学年高中物理第3章磁场3磁感应强度磁通量学案教科版选修3-1
- 备战2024中考物理一轮复习单元达标全攻略专题19生活用电含解析
- 2024-2025学年高中历史第六单元和平与发展第1课联合国的建立及其作用习题含解析新人教版选修3
- 2024-2025学年高中数学第一章计数原理1.2.2第1课时组合与组合数公式跟踪训练含解析新人教A版选修2-3
- 2024年工程全面承揽合同指南
- 2025届新教材高考政治一轮复习课时规范练37依法有效保护财产权含解析部编版
- 2024年卷闸门操作与维护培训合同
- 单数双数课件教学课件
- 251直线与圆的位置关系(第1课时)(导学案)(原卷版)
- 2024浙江绍兴市人才发展集团第1批招聘4人(第1号)高频难、易错点500题模拟试题附带答案详解
- 幼儿园说课概述-课件
- 冠状动脉介入风险预测评分的临床应用
- 35导数在经济中的应用
- 苏科版(2024新版)七年级上册数学期中学情评估测试卷(含答案)
- 部编版《道德与法治》三年级上册第10课《父母多爱我》教学课件
- 期中模拟检测(1-3单元)2024-2025学年度第一学期西师大版二年级数学
- 气管插管操作规范(完整版)
- 2024-2025学年外研版英语八年级上册期末作文范文
- 四级劳动关系协调员试题库含答案
评论
0/150
提交评论