




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省商丘市春来中学2023年高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一梯形的直观图是如图是欧式的等腰梯形,且直观图OA′B′C′的面积为2,则原梯形的面积为()A.2 B.2 C.4 D.4参考答案:D【考点】斜二测法画直观图.【分析】把该梯形的直观图还原为原来的梯形,画出图形,结合图形解答问题即可.【解答】解:把该梯形的直观图还原为原来的梯形,如图所示;设该梯形的上底为a,下底为b,高为h,则直观图中等腰梯形的高为h′=hsin45°;∵等腰梯形的体积为(a+b)h′=(a+b)?hsin45°=2,∴(a+b)?h==4∴该梯形的面积为4.故选:D.【点评】本题考查了平面图形的直观图的画法与应用问题,解题时应明确直观图与原来图形的区别和联系,是基础题目.2.若集合,则为(
)A.
B.
C.
D.参考答案:D略3.下列关系式中正确的是(
)A.
B.
C.
D.参考答案:B4.(5分)已知α为第三象限角,则所在的象限是() A. 第一或第二象限 B. 第二或第三象限 C. 第一或第三象限 D. 第二或第四象限参考答案:D考点: 象限角、轴线角;角的变换、收缩变换.分析: α为第三象限角,即k∈Z,表示出,然后再判断即可.解答: 因为α为第三象限角,即k∈Z,所以,k∈Z当k为奇数时它是第四象限,当k为偶数时它是第二象限的角.故选D.点评: 本题考查象限角,角的变换,是基础题.可以推广到其它象限.5.求值:sin(﹣)=()A. B. C. D. 参考答案:B6.在ABC中,若sinA:sinB:sinC=2:3:4,则∠ABC等于()
A、参考答案:解析:由正弦定理得:a:b:c=2:3:4令a=2x,则b=3x,c=4x
∴由余弦定理得:=7..对于集合,定义,,设,,则(
)
参考答案:C略8.已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是()A.(0,] B.[,] C.[,]∪{} D.[,)∪{}参考答案:C【考点】分段函数的应用;根的存在性及根的个数判断.【分析】利用函数是减函数,根据对数的图象和性质判断出a的大致范围,再根据f(x)为减函数,得到不等式组,利用函数的图象,方程的解的个数,推出a的范围.【解答】解:y=loga(x+1)+1在[0,+∞)递减,则0<a<1,函数f(x)在R上单调递减,则:;解得,;由图象可知,在[0,+∞)上,|f(x)|=2﹣x有且仅有一个解,故在(﹣∞,0)上,|f(x)|=2﹣x同样有且仅有一个解,当3a>2即a>时,联立|x2+(4a﹣3)x+3a|=2﹣x,则△=(4a﹣2)2﹣4(3a﹣2)=0,解得a=或1(舍去),当1≤3a≤2时,由图象可知,符合条件,综上:a的取值范围为[,]∪{},故选:C.9.若函数f(x)=ax3﹣bx+c为奇函数,则c=()A.0 B.1 C.﹣1 D.﹣2参考答案:A【考点】函数奇偶性的性质.【分析】利用定义域含原点的奇函数的图象过原点,求得参数c的值.【解答】解:∵函数f(x)=ax3﹣bx+c为奇函数,∴f(0)=0,求得c=0,故选:A.10.设函数,若关于的方程恰有6个不同的实数解,则实数a的取值范围为(
)A. B. C. D.参考答案:B【分析】首先令,转化成在有两个解的问题根据函数解析式画出的图像根据一元二次方程根的分别问题即可得的取值范围。【详解】由题意得的图像如图:令,因为恰有六个解,所以。即有两个不同的解,因此,选B.【点睛】本题主要考查了函数与方程的综合运用;函数的零点与方程根的关系;根的存在性及根的个数判断.另外本题考了数学中比较主要的一种思想:换元法,即把等式或方程中的每一部分看成一个整体,这样简化计算。二、填空题:本大题共7小题,每小题4分,共28分11.二次函数f(x)满足f(2+x)=f(2-x),又f(x)在[0,2]上是增函数,且f(a)≥f(0),
那么实数a的取值范围是_______________.参考答案:12.若,则的取值范围是
.参考答案:(﹣π,0)【考点】不等式的基本性质.【分析】利用不等式的性质进行运算即可.【解答】解:∵﹣,则?,故答案为:(﹣π,0).【点评】本题考查了不等式的基本性质,属于基础题.13.数列的通项公式为,则这个数列的前99项之和.
参考答案:略14.在四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥平面ABCD,AB=2,,,,则当x变化时,直线PD与平面PBC所成角的取值范围是
.参考答案:如图建立空间直角坐标系,得设平面的法向量,,所以,得,又所以,所以,所以,则
15.已知函数,实数且,满足,则的取值范围是_________.参考答案:(12,32)画出函数的图象(如图所示),∵,且,∴,且,∴,∵,∴,∴。故所求范围为。答案:
16.已知f(x)=(a﹣1)x在R上单调递增,则a范围是.参考答案:a>2考点:指数函数的图像与性质.专题:函数的性质及应用.分析:由指数函数的单调性知a﹣1>,解得即可.解答:解:因为指数函数f(x)=(a﹣1)x在R上单调递增,所以a﹣1>1,解得a>2.故答案为:a>2.点评:本题主要考查指数函数的单调性.17.已知f(2x+1)=x2﹣2x,则f(3)=
.参考答案:﹣1【考点】函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】【方法一】利用换元法求出f(x)的解析式,再计算f(3)的值.【方法二】根据题意,令2x+1=3,求出x=1,再计算f(3)的值.【解答】解:【方法一】∵f(2x+1)=x2﹣2x,设2x+1=t,则x=,∴f(t)=﹣2×=t2﹣t+,∴f(3)=×32﹣×3+=﹣1.【方法二】∵f(2x+1)=x2﹣2x,令2x+1=3,解得x=1,∴f(3)=12﹣2×1=﹣1.故答案为:﹣1.【点评】本题考查了求函数的解析式以及利用函数的解析式求值的应用问题,是基础题目.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知点到两个定点距离的比为,(Ⅰ)求动点P的轨迹方程;(Ⅱ)若点到直线的距离为1.求直线的方程.参考答案:(Ⅰ)设点的坐标为,则题设有,即. 整理得. ①------------------------5分 (Ⅱ)因为点到的距离为,, 所以,直线的斜率为, 直线的方程为------------------8分 将式代入式整理得.解得. 代入式得点的坐标为或;或.--------10分直线的方程为或.-----------------12分19.已知函数y=|x|?(x﹣4),试完成以下问题:(Ⅰ)在如图所示平面直角坐标系中画出该函数的图象;(Ⅱ)利用图象直接回答:当方程|x|(x﹣4)=k分别有一解、两解、三解时,k的取值范围.参考答案:【考点】函数的图象.【分析】(Ⅰ)要根据绝对值的定义,分当x<0时和当x≥0时两种情况,化简函数的解析式,将函数y=|x|(x﹣4)写出分段函数的形式,结合二次函数的图象和性质,分段画图(Ⅱ)根据(1)中函数的图象,结合函数的极大值为0,极小值为﹣4,可得方程|x|?(x﹣4)=k有一解,有两解和有三解时,k的取值范围.【解答】解:(Ⅰ)当x<0时,y=|x|(x﹣4)=﹣x(x﹣4)当x≥0时,y=|x|(x﹣4)=x(x﹣4)综上y=其函数图象如图所示:(Ⅱ)由(1)中函数的图象可得:当k<﹣4或k>0时,方程|x|?(x﹣4)=k有一解当k=﹣4或k=0时,方程|x|?(x﹣4)=k有两解当﹣4<k<0时,方程|x|?(x﹣4)=k有三解20.如图,在平面直角坐标系中,点,直线.设圆的半径为,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.
参考答案:略21.(本题16分)设函数(>0且,),f(x)是定义域为R的奇函数.(1)求k的值,判断并证明当a>1时,函数f(x)在R上的单调性;(2)已知f(1)=,函数g(x)=a2x+a﹣2x﹣2f(x),,求g(x)的值域;(3)已知a=3,若f(3x)≥λ?f(x)对于时恒成立.请求出最大的整数λ.参考答案:(Ⅰ)∵f(x)=kax﹣a﹣x是定义域为R上的奇函数,∴f(0)=0,得k=1,∴f(x)=ax﹣a﹣x,∵f(﹣x)=a﹣x﹣ax=﹣f(x),∴f(x)是R上的奇函数,设x2>x1,则f(x2)﹣f(x1)=ax2﹣a﹣x2)﹣(ax1﹣a﹣x1)=(ax2﹣ax1)(1+),∵a>1,∴ax2>ax1,∴f(x2)﹣f(x1)>0,∴f(x)在R上为增函数;(Ⅱ)∵f(1)=,∴a﹣=,即2a2﹣3a﹣2=0,∴a=2或a=﹣(舍去),则y=g(x)=22x+2﹣2x﹣2(2x﹣2﹣x),,令t=2x﹣2﹣x,,由(1)可知该函数在区间上为增函数,则﹣,,则y=h(t)=t2﹣2t+2,﹣,,当t=﹣时,ymax=;当t=1时,ymin=1,∴g(x)的值域为[1,,(Ⅲ)由题意,即33x+3﹣3x≥λ(3x﹣3﹣x),在时恒成立令t=3x﹣3﹣x,x∈[1,2],则,则(3x﹣3﹣x)(32x+3﹣2x+1)≥λ(3x﹣3﹣x),恒成立,即为t(t2+3)≥λ?t,t恒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 炼铁副产物回收利用考核试卷
- 滚动轴承的逆向工程与设计考核试卷
- 电光源在户外健身设施照明中的应用考核试卷
- 电工仪表的远程监控与智能数据分析系统开发考核试卷
- 生态环境监测在生态红线边界管理中的应用考核试卷
- 灌溉工程建设的环境友好性与生态效益考核试卷
- 灯具行业供应链管理与优化考核试卷
- 激光切割与焊接技术考核试卷
- 2025建筑工程项目合同合作协议范本
- 《大海啊故乡》课件-3
- 补全对话10篇(新疆中考真题+中考模拟)(解析版)
- 湖南省长沙市麓山国际实验学校2024-2025学年高二下学期第一次学情检测化学试卷(图片版含答案)
- 2025-2030中国防火材料行业深度调研及投资前景预测研究报告
- 行政管理本科毕业论文-中国逆城市化现象的成因及启示
- 2024年浙江钱江生物化学股份有限公司招聘笔试真题
- 2025年中国影像测量机市场调查研究报告
- xx地块房地产项目可行性研究报告(参考)
- 外研版(三起)(2024)三年级下册英语Unit 2 Know your body单元备课教案
- 知识产权法自考考点
- 2024-2025学年第二学期天域全国名校协作体高三3月联考 语文试卷(含答案)
- 2025光伏发电站绿色拆除技术规范
评论
0/150
提交评论