![相关分析与一元线性回归分析_第1页](http://file4.renrendoc.com/view/b09c185e03f5ed86d6b386d5fab0e1c6/b09c185e03f5ed86d6b386d5fab0e1c61.gif)
![相关分析与一元线性回归分析_第2页](http://file4.renrendoc.com/view/b09c185e03f5ed86d6b386d5fab0e1c6/b09c185e03f5ed86d6b386d5fab0e1c62.gif)
![相关分析与一元线性回归分析_第3页](http://file4.renrendoc.com/view/b09c185e03f5ed86d6b386d5fab0e1c6/b09c185e03f5ed86d6b386d5fab0e1c63.gif)
![相关分析与一元线性回归分析_第4页](http://file4.renrendoc.com/view/b09c185e03f5ed86d6b386d5fab0e1c6/b09c185e03f5ed86d6b386d5fab0e1c64.gif)
![相关分析与一元线性回归分析_第5页](http://file4.renrendoc.com/view/b09c185e03f5ed86d6b386d5fab0e1c6/b09c185e03f5ed86d6b386d5fab0e1c65.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
相关分析与一元线性回归分析第一页,共三十五页,2022年,8月28日第一节相关分析和回归分析概述第二节相关分析第三节一元线性回归分析本章内容第二页,共三十五页,2022年,8月28日第一节相关分析和回归分析概述第三页,共三十五页,2022年,8月28日一、相关关系的概念及特点
1.相关关系:客观现象之间存在的互相依存的不确定性关系。
2.特点:(1)现象之间确实存在着数量上的依存关系;(2)现象之间数量上的关系是不确定、不严格的依存关系。
第四页,共三十五页,2022年,8月28日图10-1相关关系分类示意图二、相关关系的分类第五页,共三十五页,2022年,8月28日三、相关分析与回归分析相关分析是用相关系数去表现现象间相关关系的方向和密切程度。回归分析:根据相关关系的形态,选择一个合适的数学模型(称为回归方程式),来近似地表示变量间的平均变化关系的一种统计分析方法。第六页,共三十五页,2022年,8月28日三、相关表与相关图相关表是一种反映变量之间相关关系的统计表。相关表的编制,一般以x为自变量,y为因变量,把每个自变量与其相应的因变量在表格中一一对应地排列。通过相关表可以初步看出相关关系的形式、密切程度和相关方向。相关图又称散点图、散布图(scatterdiagram),是将相关表中的观测值在平面直角坐标系中用坐标点描绘出来,以表明相关点的分布状况。通过相关图,可以大致看出两个变量之间有无相关关系以及相关的形态、方向和密切程度。第七页,共三十五页,2022年,8月28日图10-2强正相关
图10-3弱正相关第八页,共三十五页,2022年,8月28日图10-4强负相关图10-5弱负相关第九页,共三十五页,2022年,8月28日图10-6非线性相关图10-7不相关第十页,共三十五页,2022年,8月28日利用Excel绘制散点图的具体方法
①进入Excel表格界面,然后直接点击“图表”命令。出现如图10-8所示的对话框,选择“XY散点图”。图10-8第十一页,共三十五页,2022年,8月28日
②单击“自定义类型”,出现图10-9所示的对话框,选择“两轴折线图”。③单击下一步,出现图10-10的对话框,在数据区域里选择数据区域“$B2︰C9”。
图10-9图10-10第十二页,共三十五页,2022年,8月28日
④单击下一步,出现图10-11的对话框,在系列里选择“产品产量”和“生产费用”,在分类X轴标志里选择“$A2:$A9”。⑤单击下一步,出现图10-12的对话框,在图表标题框里输入“产品产量与生产费用相关图”,X轴输入“时间”,Y轴分别输入“产品产量”和“生产费用”,单击“完成”出现图10-13的输出结果:图10-11图10-12第十三页,共三十五页,2022年,8月28日
⑥输出结果图10-13第十四页,共三十五页,2022年,8月28日第二节相关分析第十五页,共三十五页,2022年,8月28日一、单相关关系的测定——相关系数相关系数:在线性相关条件下,说明两个现象之间相关关系的方向和密切程度的统计分析指标。通常用r来表示。总体相关系数的计算:式中,Var(X)是变量X的方差;Var(Y)是变量Y的方差;Cov(X,Y)是变量X和Y的协方差。第十六页,共三十五页,2022年,8月28日
相关系数的定义公式为:式中,n表示资料项数;表示x变量数列的算术平均数;表示y变量数列的算术平均数;σx表示x变量数列的标准差;σy表示y变量数列的标准差;表示x,y两个变量数列的协方差。第十七页,共三十五页,2022年,8月28日上述定义公式,整理可写成:在实际应用中,可运用相关系数简捷法。即:
第十八页,共三十五页,2022年,8月28日例1:设某市十家主要商场的人均销售额和利润率资料如表10-2所示,试计算其相关系数。表10-1主要商场的人均销售额和利润率资料第十九页,共三十五页,2022年,8月28日
解:根据表中所列示的资料,代入下式
第二十页,共三十五页,2022年,8月28日(1)利用Excel公式计算相关系数r
例2:针对表10-2,借助于Excel表格计算相关系数。①进入Excel表格界面,选中C15单元格,输入“=”,单击插入“fx”函数命令,出现图10.14对话框,单击“选择类别”,在下拉菜单中选中“统计”,在选择函数中选择“CORREL”函数。图10-14第二十一页,共三十五页,2022年,8月28日
②在图10-15对话框里,在Arrey1一栏输入B3︰B12,在Arrey2里输入C3︰C12。③单击“确定”,计算出r=0.9874。图10-15图10-16第二十二页,共三十五页,2022年,8月28日(2)利用Excel“数据分析”计算相关系数r用工具“加载宏”选项选中“分析工具库”选项
,见图10-17。这时,在“工具”菜单中选中“数据分析”命令。从“数据分析”选项中选中“相关系数”选项,见图10-18。
图10-17图10-18第二十三页,共三十五页,2022年,8月28日在输入的区域里输入“$B$3︰$C$12”,在输出的区域里输入“$B$15︰$D$17”,见图10-19。相关系数分析的结果间图10-20。图10-19图10-20第二十四页,共三十五页,2022年,8月28日
绘制散点图,见图10-21,可以看出:由于r=0.987,人均销售额和利润率高度正相关。图10-21第二十五页,共三十五页,2022年,8月28日二、单相关关系的判定相关系数的数值范围,是在-1和+1之间,即-1≤r≤+1;r>0为正相关,r<0为负相关;|r|越接近于1,则表示相关关系越强,越接近于0,则表示相关关系越弱;相关系数的绝对值|r|在0.3以下是无直线相关,0.3以上是有直线相关,0.3~0.5是低度直线相关,0.5~0.8是显著相关(中等程度相关),0.8以上是高度相关。第二十六页,共三十五页,2022年,8月28日第三节一元线性回归分析第二十七页,共三十五页,2022年,8月28日一、回归分析的一般问题回归分析所研究的两个变量不是对等关系,必须根据研究目的,先确定其中一个是自变量,另一个是因变量;回归分析可以根据研究目的不同分别建立两个不同的回归方程;回归分析对资料的要求是,自变量是可以控制的变量(给定的变量),因变量是随机变量。第二十八页,共三十五页,2022年,8月28日
二、一元线性回归分析
式中,a表示回归直线在y轴上的截距,代表经济现象经过修匀的基础水平;b表示直线的斜率,称为y倚x的回归系数,表明x每变动一个单位时,影响y平均变动的数量;a和b表示确定回归直线模型的两个待定参数。第二十九页,共三十五页,2022年,8月28日例3:根据表10-2人均销售额与利润率资料,求其一元线性回归方程。表10-2人均销售额与利润率资料第三十页,共三十五页,2022年,8月28日
解:首先,根据表中合计栏的资料求出标准方程组中所需数据;其次,将求出的数据代入公式,求出a、b的值:再次,将a、b的值代入回归方程得:最后,由回归方程可得相应的回归估计值,如表10-2所示。第三十一页,共三十五页,2022年,8月28日三、估计标准误差的计算方法
式中,Sy表示估计标准误差;为均方残差(SS),n-2表示数据的项数的自由度。估计标准误差是残差平方和(SS)除以它的自由度n-2后的平方根。1.根据定义公式计算第三十二页,共三十五页,2022年,8月28日例4:根据表10-1,估计标准误。
解:
第三十三页
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年吡唑啉酮项目合作计划书
- 2025年湿式碾米机项目建议书
- 加强云服务与本地数据同步策略
- 智能科技服务合同
- 设备采购申请说明及预算分析报告书
- 雷锋的敬业精神观后感
- 智联保密协议
- 8-Iodooctan-1-amine-生命科学试剂-MCE
- 大学数学文化节活动故事征文
- 董事会会议纪要模板
- 公路工程节后复工安全教育
- 2024.8.1十七个岗位安全操作规程手册(值得借鉴)
- 小王子-英文原版
- T-CHTS 10021-2020 在役公路隧道长期监测技术指南
- 医院门诊医生绩效考核标准及评分细则
- 道路桥梁实习日记12篇
- 第十章运动代偿
- 《企业经营统计学》课程教学大纲
- 如何做好健康沙龙
- 交通安全设施养护技术.ppt
- 环锤式碎煤机使用说明书(参考)
评论
0/150
提交评论