下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
部编版八年级数学上册知识点知识是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。任何一门学科的知识都需要大量的记忆和练习来巩固。虽然辛苦,但也伴随着快乐!下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助。初二数学知识点【相似、全等三角形】1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似2、相似三角形判定定理1两角对应相等,两三角形相似(ASA)3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似4、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)5、判定定理3三边对应成比例,两三角形相似(SSS)6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比8、性质定理2相似三角形周长的比等于相似比9、性质定理3相似三角形面积的比等于相似比的平方10、边角边公理有两边和它们的夹角对应相等的两个三角形全等11、角边角公理有两角和它们的夹边对应相等的两个三角形全等12、推论有两角和其中一角的对边对应相等的两个三角形全等13、边边边公理有三边对应相等的两个三角形全等14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等15、全等三角形的对应边、对应角相等【等腰、直角三角形】1、等腰三角形的性质定理等腰三角形的两个底角相等2、推论1等腰三角形顶角的平分线平分底边并且垂直于底边3、等腰三角形的顶角平分线、底边上的中线和高互相重合4、推论3等边三角形的各角都相等,并且每一个角都等于60°5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)6、推论1三个角都相等的三角形是等边三角形7、推论2有一个角等于60°的等腰三角形是等边三角形8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半9、直角三角形斜边上的中线等于斜边上的一半八年级数学知识点1.提公共因式法※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.如:※2.概念内涵:(1)因式分解的最后结果应当是“积”;(2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即:※3.易错点点评:(1)注意项的符号与幂指数是否搞错;(2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.2.运用公式法※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.※2.主要公式:(1)平方差公式:(2)完全平方公式:¤3.易错点点评:因式分解要分解到底.如就没有分解到底.※4.运用公式法:(1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;③二项是异号.(2)完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍.3.因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.八年级数学重要知识点【概率初步】23.1确定事件和随机事件1.在一定条件下必定出现的现象叫做必然事件2.在一定条件下必定不出现的现象叫做不可能事件3.必然事件和不可能事件统称为确定事件4.那些在一定条件下可能出现也可能不出现的现象叫做随机时间,也称为不确定事件23.2事件发生的可能性23.3时间的概率1.用来表示某事件发生的可能性大小的数叫做这个事件的概率2.规定用0作为不可能事件的概率;用1作为必然时间的概率4.如果一项可以反复进行的试验具有以下特点:(1)试验的结果是有限个,各种结果可能出现的机会是均等的;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电酒窖市场环境与对策分析
- 家用可生物降解塑料制食品垃圾袋相关项目实施方案
- 2024万科物业服务质量保证合同
- 小升初专项复习 专题18:书面表达
- 教育机构招生策划方案
- 盛钢水桶项目可行性实施报告
- 工业自动化设备操作与维护手册
- 电钻用钻头夹盘市场环境与对策分析
- Unit 2 语音(复习讲义)-2023-2024学年五年级英语上册单元速记·巧练(译林版三起)
- M9U2课文知识复习+巩固练习-2023-2024学年五年级英语上册单元速记·巧练(外研版三起)
- 装饰工程施工现场管理制度
- 短线趋势主图(通达信指标公式源码)
- 中级微观范课堂讲义curves
- 小学数学课堂观察报告
- 国有企业公务用车管理办法(麻七自用修订版)
- 搅拌站管理办法及制度
- 急性心功能衰竭抢救流程图
- SOP京东商家入驻合同
- 对“一次函数与二元一次方程(组)”课的点评
- 铅酸蓄电池检测报告样本(共6页)
- 供应商合同履约评价表材料类
评论
0/150
提交评论