2023届陕西省咸阳市实验中学高三上学期第四次模拟考试理科数学试题_第1页
2023届陕西省咸阳市实验中学高三上学期第四次模拟考试理科数学试题_第2页
2023届陕西省咸阳市实验中学高三上学期第四次模拟考试理科数学试题_第3页
2023届陕西省咸阳市实验中学高三上学期第四次模拟考试理科数学试题_第4页
2023届陕西省咸阳市实验中学高三上学期第四次模拟考试理科数学试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

04/2003/20/陕西省实验中学高2023届高三第四次模拟考试理科数学一、单项选择题(本题共12道小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知i是虚数单位,复数,则复数的虚部为(???????)A. B. C. D.2.已知集合,,则(???????)A. B. C. D.3.的展开式中的系数为A.10 B.20 C.40 D.804.已知,,动点满足,则动点的轨迹与圆的位置关系是(???????)A.相交 B.外切 C.内切 D.相离5.若,则(???????)A. B. C. D.6.如图,在正方体中,点E,F分别是棱,的中点,点G是棱的中点,则过线段AG且平行于平面的截而图形为(???????)A.等腰梯形 B.三角形 C.正方形 D.矩形7.函数的图象大致是(???????)A. B.C. D.8.某化工企业为了响应并落实国家污水减排政策,加装了污水过滤排放设备,在过滤过程中,污染物含量(单位:mg/L)与时间(单位:h)之间的关系为:(其中,是正常数).已知经过1h,设备可以过滤掉20%的污染物,则过滤60%的污染物需要的时间最接近(???????)(参考数据:)A.3h B.4h C.5h D.6h9.在区间与中各随机取1个数,则两数之和大于的概率为(???????)A. B. C. D.10.某校安排5名同学去A,B,C,D四个爱国主义教育基地学习,每人去一个基地,每个基地至少安排一人,则甲同学被安排到A基地的排法总数为(???????)A.24 B.36 C.60 D.24011.已知双曲线C:,过右焦点F作C的一条渐近线的垂线l,垂足为点A,与C的另一条渐近线交于点B,若,则C的离心率为(??????????)A.2 B. C. D.12.已知,其中为自然对数的底数,则(???????)A. B.C. D.二、填空题(本题共4道小题,每小题5分,共20分)13.若,则__________.14.若直线是曲线和的公切线,则实数的值是______.15.已知抛物线上有两动点,,线段的中点到轴距离的是2,则线段长度的最大值为______.16.中国古代数学名着《九章算术》中将底面为矩形且有一条侧棱垂直于底面的四棱锥称为“阳马”.现有一“阳马”的底面是边长为3的正方形,垂直于底面的侧棱长为4,则该“阳马”的内切球表面积为_________,内切球的球心和外接球的球心之间的距离为________.三、解答题(本题共6道小题,共70分,写出必要的文字说明与演算步骤)17.某校为了解本校学生课间进行体育活动的情况,随机抽取了60名男生和60名女生,通过调查得到如下数据:60名女生中有10人课间经常进行体育活动,60名男生中有20人课间经常进行体育活动.(1)请补全列联表,试根据小概率值的独立性检验,判断性别与课间经常进行体育活动是否有关联;课间不经常进行体育活动课间经常进行体育活动合计男女合计(2)以样本的频率作为概率的值,在全校的学生中任取4人,记其中课间经常进行体育活动的人数为,求的分布列、数学期望和方差.附表:0.10.050.010.0050.0012.7063.8416.6357.87910.828附:,其中.18.已知是数列的前项和,已知目,(1)求数列的通项公式;(2)设,求数列的前项和.19.如图,在四棱锥中,,,,是棱的中点,且平面(1)证明:平面;(2)若,求二面角的正弦值.20.已知椭圆C:的离心率为,的面积为2.(I)求椭圆C的方程;(II)设M是椭圆C上一点,且不与顶点重合,若直线与直线交于点P,直线与直线交于点Q.求证:△BPQ为等腰三角形.21.已知函数的极值为.(1)求p的值,并求的单调区间;(2)若,证明:.选做题(22题,23题选做一题,多做或做错,按照第一题计分)22.在直角坐标系中,已知曲线的参数方程为(为参数).(1)写出曲线的普通方程;(2)设为曲线上的一点,将绕原点逆时针旋转得到.当运动时,求的轨迹.23.已知函数.(1)若,求函数的定义域;(2)若,求证:.16/2015/20/1.B【分析】根据复数运算法则即可得到答案.【详解】因为,所以复数的虚部为.故选:B.2.C【分析】根据集合的表示求得集合,按照集合的并集运算即可.【详解】解:由已知有,所以.故选:C.3.C【详解】分析:写出,然后可得结果详解:由题可得令,则所以故选C.点睛:本题主要考查二项式定理,属于基础题.4.B【分析】由题意求出动点的轨迹方程,再由两圆圆心距与半径的关系判断.【详解】设,由题意可知,整理得,点的轨迹方程为,其图形是以为圆心,以2为半径的圆,而圆的圆心坐标为,半径为1,可得两圆的圆心距为3,等于,则动点的轨迹与圆的位置关系是外切.故选:B.5.D【分析】通过化弦为切得,代入数据即可.【详解】由已知可得,则则故选:D.6.A【分析】利用平行作出截面图形,即可判断形状.【详解】取BC中点H,连接AH,GH,,.如下图所示:由题意得,.又平面,平面,平面,同理平面.又,平面,平面平面,故过线段且与平面平行的截面为四边形,显然四边形为等腰梯形.故选:A7.A【分析】根据函数的奇偶性以及特殊点的函数值求得正确答案.【详解】,所以的定义域为,,所以是奇函数,图象关于原点对称,排除BD选项.,排除C选项,所以A选项正确.故选:A8.B【分析】由题意可得,进而利用指数与对数的关系可得,再用换底公式结合对数的运算性质求解即可【详解】由题意可知,所以,设过滤60%的污染物需要的时间为,则,所以,所以,比较接近4.故选:B9.B【分析】设从区间中随机取出的数分别为,则实验的所有结果构成区域为,设事件表示两数之和大于,则构成的区域为,分别求出对应的区域面积,根据几何概型的的概率公式即可解出.【详解】如图所示:设从区间中随机取出的数分别为,则实验的所有结果构成区域为,其面积为.设事件表示两数之和大于,则构成的区域为,即图中的阴影部分,其面积为,所以.故选:B.【点睛】本题主要考查利用线性规划解决几何概型中的面积问题,解题关键是准确求出事件对应的区域面积,即可顺利解出.10.C【分析】分两种情况分类计算,一种是基地只有甲同学在,另外一种是A基地有甲同学还有另外一个同学也在,两种情况相加即可.【详解】当基地只有甲同学在时,那么总的排法是种;当A基地有甲同学还有另外一个同学也在时,那么总的排法是种;则甲同学被安排到A基地的排法总数为种.故选:C11.C【分析】结合点到直线的距离公式、角平分线的性质求得,进而求得离心率.【详解】右焦点,一条渐近线为,到的距离为,即,由于,所以,由于,由正弦定理得,而,所以,所以.故选:C12.B【分析】观察,发现都含有,把换成,自变量在或其子集范围内构造函数,利用导数证明其单调性,比较的大小.【详解】令,,令,,当时,,单调递增,又,所以,又,所以,在成立,所以即,令,,在为减函数,所以,即,令,,在为减函数,所以,即,所以,成立,令,则上式变为,所以所以,所以.故答案为:B.【点睛】比较大小题目,是高考的热点,也是难点,通过观察和构造函数是基本的解题要求,难点在于构造后的证明,需要平时多积累常见的结论,达到深入理解,举一反三,融会贯通.13.##0.5【分析】利用辅助角公式得即可求出即可求解.【详解】因为,所以即,所以,所以故答案为:.14.1【分析】设直线与曲线分别相切于点,利用导数求出曲线在点处的切线方程,以及曲线在点处的切线方程,可得出关于的方程组,解出这两个量的值,即可求得的值.【详解】设直线与曲线分别相切于点,对函数求导得,则,曲线在点处的切线方程为,即,对函数求导得,则,曲线在点处的切线方程为,即,所以,化简可得,故答案为:1.15.5【分析】根据椭圆定义及三角形三边关系得,再结合梯形中位线性质即可得到最值.【详解】设抛物线的焦点为,点在抛物线的准线上的投影为,点在直线上的投影为,线段的中点为,点到轴的距离为2,则,当且仅当,即、、三点共线时等号成立,所以的最大值为5.故答案为:5.16.????????##【分析】因为内切球的球心到几何体每个面的距离相等,利用半径,几何体表面面积,几何体体积之间的关系,可以求出半径;建立空间直角坐标系,由第一空可得内切球球心坐标,将几何体补全成长方体可得外接球球心坐标,计算两点间距离.【详解】如图,为正方形,设垂直于平面,由题,,因为,,所以平面ADP,所以,为直角三角形,由题,,四棱锥表面积,体积,设内切球半径为r,则,得,内切球表面积为;以DA,DC,DP分别为x,y,z轴建立如图空间直角坐标系,因为内切球半径,所以内切球球心,因为该四棱锥可以补全为棱长分别为3,3,4的长方体,所以外接球球心,两点间距离.故答案为:;17.(1)表格见解析,有关联(2)分布列见解析,数学期望为1,方差为【分析】(1)计算卡方,根据独立性检验方法求解即可;(2)根据二项分布的分布列与数学期望和方差公式求解即可【详解】(1)零假设为:性别与课间经常进行体育活动相互独立,即性别与课间是否经常进行体育活动无关,依题意,列出列联表如下:课间不经常进行体育活动课间经常进行体育活动合计男402060女501060合计9030120,根据小概率值的独立性检验,我们推断不成立,即认为性别与课间是否经常进行体育活动有关联,此推断犯错误的概率不大于0.05(2)由题意得,经常进行体育活动者的频率为,所以在本校中随机抽取1人为经常进行体育活动者的概率为,随机变量的所有可能取值为0,1,2,3,4,由题意得,所以,,,,,,的分布列为:01234的数学期望为,的方差为.18.(1),.(2),其中.【分析】对于(1),先由可得表达式,再由,其中.可得的通项公式;对于(2),由(1)可得,则,据此可得数列的前项和.【详解】(1)由题,又由,.可得,.故.则当,时,.又时,,故数列的通项公式是,.(2)由(1)可知,,则.则当为偶数时,.当为奇数时,.综上:,其中.19.(1)证明见解析(2)【分析】(1)取中点,连接,,,证明故面,,得到答案.(2)建立空间直角坐标系,计算各点坐标,得到平面法向量和平面法向量,根据向量的夹角公式计算得到答案.【详解】(1)取中点,连接,,,,面,面,故面,面,,面面,平面平面,平面平面,故.,,,,故,,是中点,故,,平面,故面,,故面.(2)如图所示以为轴建立空间直角坐标系,,,,,,,设平面法向量为,,取,,设平面法向量为,,取,,,设二面角的平面角为,.20.(I);(II)证明见解析【解析】(I)运用椭圆离心率公式和三角形面积公式,结合的关系,解方程可得,从而得到椭圆方程(II)设,直线的直线方程为直线的直线方程为,联解求出点坐标,同理求出坐标,,,只需证明,利用作差法可证明.【详解】(I)由题意得,解得,故椭圆的方程为.(II)由题意得,设点,则有,又直线的直线方程为,直线的直线方程为,,解得,点的坐标为.又直线的直线方程为,直线的直线方程为.,解得,点的坐标为.,.,,,△BPQ为等腰三角形.【点睛】圆锥曲线中的几何证明问题多出现在解答题中,难度较大,多涉及线段或角相等以及位置关系的证明等.通常利用代数方法,即把要求证的等式或不等式用坐标形式表示出来,然后进行化简计算等进行证明21.(1);单调减区间为,单调增区间为;(2)证明见解析.【分析】(1)根据极值点处导数为零,以及函数的极值,列出方程求得参数;再利用导数判断函数单调性即可;(2)构造函数,根据其单调性,通过证明,即可证明结果.【详解】(1)设的极值点为,,则,解得,,经检验,时满足题意.所以,,当时,,当时,,所以的单调减区间为,单调增区间为.(2)不妨设,因为,由(1)知,,.设函数,,则,所以在上单调递减,所以,即,所以,即.又,,所以,即.由,得,又,所以所以,即,得证.【点睛】关键点点睛:本题考查利用导数由函数极值求参数,以及利用导数求函数单调性和证明不等式;第二问处理的关键是如何逆向思考,得到构造的思路,属综合困难题.22.(1)(2)【分析】(1)由参数方程消去参数方程可得其普通方程;(2)设,则,将的直角坐标代入对应的直角坐标方程可得其极坐标,再

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论