2021-2022学年陕西省西安市莲湖区高三下学期联合考试数学试题含解析_第1页
2021-2022学年陕西省西安市莲湖区高三下学期联合考试数学试题含解析_第2页
2021-2022学年陕西省西安市莲湖区高三下学期联合考试数学试题含解析_第3页
2021-2022学年陕西省西安市莲湖区高三下学期联合考试数学试题含解析_第4页
2021-2022学年陕西省西安市莲湖区高三下学期联合考试数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.关于的不等式的解集是,则关于的不等式的解集是()A. B.C. D.2.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.23.已知双曲线的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为()A. B. C. D.4.运行如图所示的程序框图,若输出的的值为99,则判断框中可以填()A. B. C. D.5.已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为()A. B. C. D.6.椭圆的焦点为,点在椭圆上,若,则的大小为()A. B. C. D.7.已知为虚数单位,实数满足,则()A.1 B. C. D.8.若复数满足(是虚数单位),则()A. B. C. D.9.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为()A. B. C. D.10.如图所示,正方体的棱,的中点分别为,,则直线与平面所成角的正弦值为()A. B. C. D.11.已知函数,若曲线在点处的切线方程为,则实数的取值为()A.-2 B.-1 C.1 D.212.已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),则双曲线的离心率为()A. B.3 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.春天即将来临,某学校开展以“拥抱春天,播种绿色”为主题的植物种植实践体验活动.已知某种盆栽植物每株成活的概率为,各株是否成活相互独立.该学校的某班随机领养了此种盆栽植物10株,设为其中成活的株数,若的方差,,则________.14.如图所示,在△ABC中,AB=AC=2,,,AE的延长线交BC边于点F,若,则____.15.在中,内角所对的边分别是.若,,则__,面积的最大值为___.16.已知,则满足的的取值范围为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.18.(12分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.(1)求抛物线的方程;(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.19.(12分)已知椭圆:(),与轴负半轴交于,离心率.(1)求椭圆的方程;(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.20.(12分)在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为4sin.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.21.(12分)已知函数()(1)函数在点处的切线方程为,求函数的极值;(2)当时,对于任意,当时,不等式恒成立,求出实数的取值范围.22.(10分)已知圆:和抛物线:,为坐标原点.(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直线的斜率为,求点的坐标.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

由的解集,可知及,进而可求出方程的解,从而可求出的解集.【详解】由的解集为,可知且,令,解得,,因为,所以的解集为,故选:A.【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.2.D【解析】

根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.3.A【解析】

在中,由余弦定理,得到,再利用即可建立的方程.【详解】由已知,,在中,由余弦定理,得,又,,所以,,故选:A.【点睛】本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立三者间的关系,本题是一道中档题.4.C【解析】

模拟执行程序框图,即可容易求得结果.【详解】运行该程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此时要输出的值为99.此时.故选:C.【点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.5.B【解析】

令,则,由图象分析可知在上有两个不同的根,再利用一元二次方程根的分布即可解决.【详解】令,则,如图与顶多只有3个不同交点,要使关于的方程有六个不相等的实数根,则有两个不同的根,设由根的分布可知,,解得.故选:B.【点睛】本题考查复合方程根的个数问题,涉及到一元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题.6.C【解析】

根据椭圆的定义可得,,再利用余弦定理即可得到结论.【详解】由题意,,,又,则,由余弦定理可得.故.故选:C.【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.7.D【解析】,则故选D.8.B【解析】

利用复数乘法运算化简,由此求得.【详解】依题意,所以.故选:B【点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.9.D【解析】

设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.10.C【解析】

以D为原点,DA,DC,DD1分别为轴,建立空间直角坐标系,由向量法求出直线EF与平面AA1D1D所成角的正弦值.【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1的棱长为2,则,,,取平面的法向量为,设直线EF与平面AA1D1D所成角为θ,则sinθ=|,直线与平面所成角的正弦值为.故选C.【点睛】本题考查了线面角的正弦值的求法,也考查数形结合思想和向量法的应用,属于中档题.11.B【解析】

求出函数的导数,利用切线方程通过f′(0),求解即可;【详解】f(x)的定义域为(﹣1,+∞),因为f′(x)a,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,可得1﹣a=2,解得a=﹣1,故选:B.【点睛】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力.12.B【解析】

设,代入双曲线方程相减可得到直线的斜率与中点坐标之间的关系,从而得到的等式,求出离心率.【详解】,设,则,两式相减得,∴,.故选:B.【点睛】本题考查求双曲线的离心率,解题方法是点差法,即出现双曲线的弦中点坐标时,可设弦两端点坐标代入双曲线方程相减后得出弦所在直线斜率与中点坐标之间的关系.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

由题意可知:,且,从而可得值.【详解】由题意可知:∴,即,∴故答案为:【点睛】本题考查二项分布的实际应用,考查分析问题解决问题的能力,考查计算能力,属于中档题.14.【解析】

过点做,可得,,由可得,可得,代入可得答案.【详解】解:如图,过点做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案为:.【点睛】本题主要考查平面向量的线性运算和平面向量的数量积,由题意作出是解题的关键.15.1【解析】

由正弦定理,结合,,可求出;由三角形面积公式以及角A的范围,即可求出面积的最大值.【详解】因为,所以由正弦定理可得,所以;所以,当,即时,三角形面积最大.故答案为(1).1(2).【点睛】本题主要考查解三角形的问题,熟记正弦定理以及三角形面积公式即可求解,属于基础题型.16.【解析】

将f(x)写成分段函数形式,分析得f(x)为奇函数且在R上为增函数,利用奇偶性和单调性解不等式即可得到答案.【详解】根据题意,f(x)=x|x|=,则f(x)为奇函数且在R上为增函数,则f(2x﹣1)+f(x)≥0⇒f(2x﹣1)≥﹣f(x)⇒f(2x﹣1)≥f(﹣x)⇒2x﹣1≥﹣x,解可得x≥,即x的取值范围为[,+∞);故答案为:[,+∞).【点睛】本题考查分段函数的奇偶性与单调性的判定以及应用,注意分析f(x)的奇偶性与单调性.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)极小值点为,极小值为,无极大值;(2)证明见解析【解析】

先对函数求导,结合已知及导数的几何意义可求,结合单调性即可求解函数的极值点及极值;令,问题可转化为求解函数的最值,结合导数可求.【详解】(1)由题得函数的定义域为.,由已知得,解得∴,令,得令,得,∴在上单调递增.令,得∴在上单调递减∴的极小值点为,极小值为,无极大值.(2)证明:由(1)知,∴,令,即∵,,∴恒成立.∴在上单调递增又,∴在上恒成立∴在上恒成立∴,即∴【点睛】本题考查了利用导数研究函数的极值问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平,属于中档题.18.(1)(2)证明见解析【解析】

(1)根据题意,设直线方程为,联立方程,根据抛物线的定义即可得到结论;(2)根据题意,设的方程为,联立方程得,同理可得,进而得到,再利用点差法得直线的斜率,利用切线与导数的关系得直线的斜率,进而可得与互补.【详解】(1)由题意设直线的方程为,令、,联立,得,根据抛物线的定义得,又,故所求抛物线方程为.(2)依题意,设,,设的方程为,与联立消去得,,同理,直线的斜率=切线的斜率,由,即与互补.【点睛】本题考查直线与抛物线的位置关系的综合应用,直线斜率的应用,考查分析问题解决问题的能力,属于中档题.19.(1)(2)证明见解析;定点坐标为【解析】

(1)由条件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【详解】(1)由题有,.∴,∴.∴椭圆方程为.(2)由得,.又∴,同理又∴∴∴∴∴∴,此时满足∴∴直线恒过定点【点睛】涉及椭圆的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体带入”等解法.20.(1)(2)(2,).【解析】

(1)利用极坐标和直角坐标的转化公式求解.(2)先把两个方程均化为普通方程,求解公共点的直角坐标,然后化为极坐标即可.【详解】(1)∵曲线C的极坐标方程为,∴,则,即.(2),∴,联立可得,(舍)或,公共点(,3),化为极坐标(2,).【点睛】本题主要考查极坐标和直角坐标的转化及交点的求解,熟记极坐标和直角坐标的转化公式是求解的关键,交点问题一般是统一一种坐标形式求解后再进行转化,侧重考查数学运算的核心素养.21.(1)极小值为,极大值为.(2)【解析】

(1)根据斜线的斜率即可求得参数,再对函数求导,即可求得函数的极值;(2)根据题意,对目标式进行变形,构造函数,根据是单调减函数,分离参数,求函数的最值即可求得结果.【详解】(1)函数的定义域为,,,,可知,,解得,,可知在,时,,函数单调递增,在时,,函数单调递减,可知函数的极小值为,极大值为.(2)可以变形为,可得,可知函数在上单调递减,,可得,设,,可知函数在单调递减,,可知,可知参数的取值范围为.【点睛】本题考查由切线的斜率求参数的值,以及对具体函数极值的求解,涉及构造函数法,以及利用导数求函数的值域;第二问的难点在于对目标式的变形,属综合性中档题.22.(1);(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论