版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.将抛物线如何平移得到抛物线()A.向左平移2个单位,向上平移3个单位; B.向右平移2个单位,向上平移3个单位;C.向左平移2个单位,向下平移3个单位; D.向右平移2个单位,向下平移3个单位.2.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3 C.4 D.53.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0),则下面的四个结论,其中正确的个数为()①2a+b=0②4a﹣2b+c<0③ac>0④当y>0时,﹣1<x<4A.1个 B.2个 C.3个 D.4个4.下列图形中的角是圆周角的是()A. B.C. D.5.下列命题正确的个数有()①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:1.A.1个 B.2个 C.3个 D.4个6.已知一元二次方程的较小根为x1,则下面对x1的估计正确的是A. B. C. D.7.下列事件中,必然事件是()A.打开电视,正在播放宜春二套 B.抛一枚硬币,正面朝上C.明天会下雨 D.地球绕着太阳转8.某人沿着坡度为1:2.4的斜坡向上前进了130m,那么他的高度上升了()A.50m B.100m C.120m D.130m9.一元二次方程中的常数项是()A.-5 B.5 C.-6 D.110.如图,在平行四边形中,点是上任意一点,过点作交于点,连接并延长交的延长线于点,则下列结论中错误的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直线l1∥l2∥l3,A、B、C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=3,且,则m+n的最大值为___________.12.如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则的长为____.13.如图,是以点为圆心的圆形纸片的直径,弦于点,.将阴影部分沿着弦翻折压平,翻折后,弧对应的弧为,则点与弧所在圆的位置关系为____________.14.如图,竖直放置的一个铝合金窗框由矩形和弧形两部分组成,AB=m,AD=2m,弧CD所对的圆心角为∠COD=120°.现将窗框绕点B顺时针旋转横放在水平的地面上,这一过程中,窗框上的点到地面的最大高度为__m.15.如图,在△ABC中,中线BF、CE交于点G,且CE⊥BF,如果,,那么线段CE的长是______.16.将一副三角尺如图所示叠放在一起,则的值是.17.如图,一架长为米的梯子斜靠在一竖直的墙上,这时测得,如果梯子的底端外移到,则梯子顶端下移到,这时又测得,那么的长度约为______米.(,,,)18.如图,有一张矩形纸片,长15cm,宽9cm,在它的四角各剪去一个同样的小正方形,然折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是48cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为_____.三、解答题(共66分)19.(10分)如图,△ABC的边BC在x轴上,且∠ACB=90°.反比例函数y=(x>0)的图象经过AB边的中点D,且与AC边相交于点E,连接CD.已知BC=2OB,△BCD的面积为1.(1)求k的值;(2)若AE=BC,求点A的坐标.20.(6分)计算:(1)2sin30°+cos45°tan60°(2)()0()-2tan230.21.(6分)计算:|-|-+20200;22.(8分)如图,在平面直角坐标系中,函数的图象与函数()的图象相交于点,并与轴交于点.点是线段上一点,与的面积比为2:1.(1),;(2)求点的坐标;(1)若将绕点顺时针旋转,得到,其中的对应点是,的对应点是,当点落在轴正半轴上,判断点是否落在函数()的图象上,并说明理由.23.(8分)先化简,后求值:,其中x=﹣1.24.(8分)如图,于点是上一点,是以为圆心,为半径的圆.是上的点,连结并延长,交于点,且.(1)求证:是的切线(证明过程中如可用数字表示的角,建议在图中用数字标注后用数字表示);(2)若的半径为5,,求线段的长.25.(10分)如图所示,在平面直角坐标系中,抛物线的顶点坐标为,并与轴交于点,点是对称轴与轴的交点.(1)求抛物线的解析式;(2)如图①所示,是抛物线上的一个动点,且位于第一象限,连结BP、AP,求的面积的最大值;(3)如图②所示,在对称轴的右侧作交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.26.(10分)解方程:(1)x2+3=4x(2)3x(x-3)=-4
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据二次函数图象的平移规律“左加右减,上加下减”即可得出答案.【详解】根据二次函数的平移规律可知,将抛物线向左平移2个单位,再向下平移3个单位即可得到抛物线,故选:C.【点睛】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.2、D【解析】设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=1.故选D.3、B【分析】①函数对称轴为:x=﹣=1,解得:b=﹣2a,即可求解;②x=﹣2时,y=4a﹣2b+c<0,即可求解;③a<0,c>0,故ac<0,即可求解;④当y>0时,﹣1<x<3,即可求解.【详解】点B坐标为(﹣1,0),对称轴为x=1,则点A(3,0),①函数对称轴为:x=﹣=1,解得:b=﹣2a,故①正确,符合题意;②x=﹣2时,y=4a﹣2b+c<0,故②正确,符合题意;③a<0,c>0,故ac<0,故③错误,不符合题意;④当y>0时,﹣1<x<3,故④错误,不符合题意;故选:B.【点睛】本题考查二次函数图像问题,熟悉二次函数图形利用数形结合解题是本题关键.4、C【解析】根据圆周角的定义来判断即可.圆周角必须符合两个条件:顶点在圆上,两边与圆相交,二者缺一都不是.【详解】解:圆周角的定义是:顶点在圆上,并且角的两边和圆相交的角叫圆周角.A、图中的角的顶点不在圆上,不是圆周角;B、图中的角的顶点也不在圆上,不是圆周角;C、图中的角的顶点在圆上,两边与圆相交,是圆周角;D.图中的角的顶点在圆上,而两边与圆不相交,不是圆周角;故选:【点睛】本题考查了圆周角的定义.圆周角必须符合两个条件.5、A【分析】利用相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质分别判断后即可确定正确的选项.【详解】①两边成比例且夹角对应相等的两个三角形相似,故错误;
②对角线相等的平行四边形是矩形,故错误;
③任意四边形的中点四边形是平行四边形,正确;
④两个相似多边形的面积比2:3,则周长比为:,故错误,
正确的有1个,
故选A.【点睛】本题考查命题与定理,解题的关键是掌握相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质.6、A【解析】试题分析:解得,∴较小根为.∵,∴.故选A.7、D【解析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.【详解】解:、打开电视,正在播放宜春二套,是随机事件,故错误;、抛一枚硬币,正面朝上是随机事件,故错误;、明天会下雨是随机事件,故错误;、地球绕着太阳转是必然事件,故正确;故选:.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、A【分析】根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.【详解】解:如图,根据题意知AB=130米,tanB==1:2.4,设AC=x,则BC=2.4x,则x2+(2.4x)2=1302,解得x=50(负值舍去),即他的高度上升了50m,故选A.【点睛】本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.9、C【分析】将一元二次方程化成一般形式,即可得到常数项.【详解】解:∵∴∴常数项为-6故选C.【点睛】本题主要考查了一元二次方程的一般形式,准确的化出一元二次方程的一般形式是解决本题的关键.10、C【分析】根据平行四边形的性质可得出AD=EF=BC、AE=DF、BE=CF,然后根据相似三角形的对应边成比例一一判断即可.【详解】∵四边形ABCD为平行四边形,EF∥BC,∴AD=EF=BC,AE=DF,BE=CF.A.∵AD∥CK,∴△ADF∽△KCF,∴,∴,即,故结论A正确;B.∵AD∥CK,∴△ADF∽△KCF,∴,∴,故结论B正确;C.∵AD∥CK,∴△ADF∽△KCF,∴,∴,即,故结论C错误;D.∵ABCD是平行四边形,∴∠B=∠D.∵AD∥BK,∴∠DAF=∠K,∴△ADF∽△KBA,∴,即,故结论D正确.故选:C.【点睛】本题考查了相似三角形的判定与性以及平行四边形的性质,根据相似三角形的性质逐一分析四个结论的正误是解题的关键.二、填空题(每小题3分,共24分)11、【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过作于,设,,,,,,,,,,即,,,,,即,,,,,当最大时,,,当时,,,的最大值为.故答案为:.【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m的函数解析式是解题的关键.12、2π.【分析】根据圆周角定理求出∠AOB,得到∠BOC的度数,根据弧长公式计算即可.【详解】解:由圆周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的长=,故答案为:2π.【点睛】本题考查的是圆周角定理、弧长的计算,掌握圆周角定理、弧长公式是解题的关键.13、点在圆外【分析】连接OC,作OF⊥AC于F,交弧于G,判断OF与FG的数量关系即可判断点和圆的位置关系.【详解】解:如图,连接OC,作OF⊥AC于F,交弧于G,∵,∴OA=OB=OC=5,AE=7,OE=2,∵,∴,∴,∵OF⊥AC,∴CF=AC,∴,∵,∴,∴,∴,∴点与弧所在圆的位置关系是点在圆外.故答案是:点在圆外.【点睛】本题考查了点和圆位置关系,利用垂径定理进行有关线段的计算,通过构造直角三角形是解题的关键.14、()【分析】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,根据已知条件求出OC和OB的长即可.【详解】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,∵∠COD=120°,CO=DO,∴∠OCD=∠ODC=30°,∵ON⊥CO,∴CN=DN=CD=AB=m,∴ON=CN=m,OC=1m,∵ON⊥BC,∴四边形OHCN是矩形,∴CH=ON=m,OH=CN=m,∴BH=BC-CH=m,∴OB==m,∴在这一过程中,窗框上的点到地面的最大高度为(+1)m,故答案为:(+1).【点睛】本题考查了垂径定理,矩形的性质和判定,勾股定理,掌握知识点是解题关键.15、【分析】根据题意得到点G是△ABC的重心,根据重心的性质得到DG=AD,CG=CE,BG=BF,D是BC的中点,由直角三角形斜边中线等于斜边一半可得BC=5,再根据勾股定理求出GC即可解答..【详解】解:延长AG交BC于D点,∵中线BF、CE交于点G,∵△ABC的两条中线AD、CE交于点G,
∴点G是△ABC的重心,D是BC的中点,
∴AG=AD,CG=CE,BG=BF,∵,,∴,.∵CE⊥BF,即∠BGC=90°,∴BC=2DG=5,在Rt△BGC中,CG=,∴,故答案为:.【点睛】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.理解三角形重心的性质是解题的关键.16、【解析】试题分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.17、【分析】直接利用锐角三角函数关系得出,的长,进而得出答案.【详解】由题意可得:∵,,,解得:,∵,,,解得:,则,答:的长度约为米.故答案为.【点睛】此题主要考查了解直角三角形的应用,正确得出,的长是解题关键.18、(15﹣2x)(9﹣2x)=1.【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是1cm2,即可得出关于x的一元二次方程,此题得解.【详解】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据题意得:(15﹣2x)(9﹣2x)=1.故答案是:(15﹣2x)(9﹣2x)=1.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.三、解答题(共66分)19、(1)k=12;(2)A(1,1).【解析】(1)连接OD,过D作DF⊥OC于F,依据∠ACB=90°,D为AB的中点,即可得到CD=AB=BD,进而得出BC=2BF=2CF,依据BC=2OB,即可得到OB=BF=CF,进而得出k=xy=OF•DF=BC•DF=2S△BCD=12;(2)设OB=m,则OF=2m,OC=3m,DF=,进而得到E(3m,-2m),依据3m(-2m)=12,即可得到m=2,进而得到A(1,1).【详解】解:(1)如图,连接OD,过D作DF⊥OC于F,∵∠ACB=90°,D为AB的中点,∴CD=AB=BD,∴BC=2BF=2CF,∵BC=2OB,∴OB=BF=CF,∴k=xy=OF•DF=BC•DF=2S△BCD=12;(2)设OB=m,则OF=2m,OC=3m,DF=,∵DF是△ABC的中位线,∴AC=2DF=,又∵AE=BC=2m,∴CE=AC-AE=-2m,∴E(3m,-2m),∵3m(-2m)=12,∴m2=4,又∵m>0,∴m=2,∴OC=1,AC=1,∴A(1,1).【点睛】本题考查了反比例函数图象上点的坐标特征,解题时注意:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.20、(1)-2(2)【分析】(1)根据特殊角的三角函数值即可求解;(2)根据负指数幂、零指数幂及特殊角的三角函数值即可求解.【详解】(1)2sin30°+cos45°tan60°=2×+-×=1+-3=-2(2)()0()-2tan230=1-4+()2=-3+=.【点睛】此题主要考查实数的运算,解题的关键是熟知特殊角的三角函数值.21、【分析】先根据绝对值的意义、二次根式的性质、零指数幂的意义逐项化简,再合并同类二次根式即可.【详解】原式==.【点睛】本题考查了实数的混合运算,正确化简各数是解答本题的关键.22、(1)6,5;(2);(1),点不在函数的图象上.【分析】(1)将点分别代入反比例函数与一次函数的表达式中即可求出k,b的值;(2)先求出B的坐标,然后求出,进而求出,得出C的纵坐标,然后代入到一次函数的表达式中即可求出横坐标;(1)先根据题意画出图形,利用旋转的性质和,求出的纵坐标,根据勾股定理求出横坐标,然后判断横纵坐标之积是否为6,若是,说明在反比例函数图象上,反之则不在.【详解】(1)将点代入反比例函数中得,∴∴反比例函数的表达式为将点代入一次函数中得,∴∴一次函数的表达式为(2)当时,,解得∵与的面积比为2:1.设点C的坐标为当时,,解得∴(1)如图,过点作于点D∵绕点顺时针旋转,得到∴∴点不在函数的图象上.【点睛】本题主要考查反比例函数,一次函数与几何综合,掌握反比例函数的图象和性质,待定系数法是解题的关键.23、x﹣2,-2.【分析】由题意先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【详解】解:==x﹣2,当x=﹣1时,原式=﹣1﹣2=﹣2.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.24、(1)见解析;(2)【分析】(1)如图连结,先证得,即可得到,即可得到是的切线;(2)由(1)知:过作于,先证明得到,设,在中,,即:解出方程即可求得答案.【详解】证明:(1)如图,连结,则,∴,∵,∴,∵,∴,而,∴,即有,∴,故是的切线;(2)由(1)知:过作于,∵,∴,而,由勾股定理,得:,在和中,∵,,∴,∴,设,在中,,即:解得:(舍去),∴.【点睛】本题考查的是相似三角形的应用和切线的性质定理,勾股定理应用,是综合性题目.25、(1);(2)当时,最大值为;(3)存在,点坐标为,理由见解析【分析】(1)利用待定系数法可求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机动车抵押借款协议
- 分期付款买卖合同样式
- 2024年度柑橘购销合同与柑橘购销合同法律适用2篇
- 2024版工程设计外包合同2篇
- 《高考复习字音练习》课件
- 二年级语文园地五课件
- 二零二四年度物业管理外包协议3篇
- 工伤和解协议书版
- 活动板房买卖合同书样本
- 《品牌的组成》课件
- 大学生职业生涯规划成品
- 12D401-3 爆炸危险环境电气线路和电气设备安装
- 2023年6月上海高考英语卷试题真题答案解析(含作文范文+听力原文)
- (新版)考评员资格考核参考题库(含答案)
- 婚介登记表完整优秀版
- 压力与水的沸点的对应关系
- SMT员工绩效考核方案
- 保安服务劳务外包合同书范本
- 有机玻璃生产线项目可行性研究报告
- 产品ID设计需求单.doc
- 上海大学微机实践报告(共9页)
评论
0/150
提交评论