2023年常用逻辑用语知识点_第1页
2023年常用逻辑用语知识点_第2页
2023年常用逻辑用语知识点_第3页
2023年常用逻辑用语知识点_第4页
2023年常用逻辑用语知识点_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精解常用逻辑用语目的认知:ﻫ考试大纲规定:

1.理解命题的概念;了解逻辑联结词“或”、“且”、“非”的含义.ﻫ2.了解命题“若p,则q”的形式及其逆命题、否命题与逆否命题,分析四种命题互相关系.

3.理解必要条件、充足条件与充要条件的意义.

4.理解全称量词与存在量词的意义;能对的地对具有一个量词的命题进行否认.ﻫ重点:充足条件与必要条件的鉴定

难点:根据命题关系或充足(或必要)条件进行逻辑推理。ﻫ知识要点梳理:ﻫ知识点一:命题:

1.定义:

一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题.(1)命题由题设和结论两部分构成.命题通常用小写英文字母表达,如p,q,r,m,n等.ﻫ(2)命题有真假之分,对的的命题叫做真命题,错误的命题叫做假命题.数学中的定义、公理、定理等都是真命题(3)命题“”的真假鉴定方式:①若要判断命题“”是一个真命题,需要严格的逻辑推理;有时在推导时加上语气词“一定”能帮助判断。如:一定推出.

②若要判断命题“”是一个假命题,只需要找到一个反例即可.注意:“不一定等于3”不能鉴定真假,它不是命题.

2.逻辑联结词:

“或”、“且”、“非”这些词叫做逻辑联结词.(1)不含逻辑联结词的命题叫简朴命题,由简朴命题与逻辑联结词构成的命题叫复合命题.

(2)复合命题的构成形式:ﻫ①p或q;②p且q;③非p(即命题p的否认).(3)复合命题的真假判断(运用真值表):非真真假真真真假假真假假真真真假假假真假假①当p、q同时为假时,“p或q”为假,其它情况时为真,可简称为“一真必真”;ﻫ②当p、q同时为真时,“p且q”为真,其它情况时为假,可简称为“一假必假”。

③“非p”与p的真假相反.ﻫ注意:(1)逻辑连结词“或”的理解是难点,“或”有三层含义,以“p或q”为例:一是p成立且q不成立,二是p不成立但q成立,三是p成立且q也成立。可以类比于集合中“或”.(2)“或”、“且”联结的命题的否认形式:“p或q”的否认是“p且q”;“p且q”的否认是“p或q”.(3)对命题的否认只是否认命题的结论;否命题,既否认题设,又否认结论。典型例题1.判断下列语句是不是命题,若是,判断出其真假,若不是,说明理由。(1)矩形难道不是平行四边形吗?(2)垂直于同一条直线的两条直线必平行吗?(3)求证:,方程无实根.(4)(5)人类在2023年登上火星.2(江西卷)下列命题是真命题的为()A.若,则 B.若,则C.若,则D.若,则3(广东)已知命题所有有理数都是实数,命题正数的对数都是负数,则下列命题中为真命题的是()A.ﻩB.ﻩC. ﻩD.4(北京)若是真命题,是假命题,则()(A)是真命题(B)是假命题(C)是真命题(D)是真命题知识点二:四种命题

1.四种命题的形式:

用p和q分别表达原命题的条件和结论,用p和q分别表达p和q的否认,则四种命题的形式为:ﻫ原命题:若p则q;逆命题:若q则p;

否命题:若p则q;逆否命题:若q则p.

2.四种命题的关系:ﻫ

①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.ﻫ②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.

除①、②之外,四种命题中其它两个命题的真伪无必然联系.四种命题及其关系:关于逆命题、否命题、逆否命题,也可以有如下表述:第一:互换原命题的条件和结论,所得的命题为逆命题;第二:同时否认原命题的条件和结论,所得的命题为否命题;ﻩ第三:互换原命题的条件和结论,并且同时否认,所得的命题为逆否命题;5.写出“若或,则”的逆命题、否命题、逆否命题及命题的否认,并判其真假。解:逆命题:若,则或,是真命题;否命题:若且,则,是真命题;逆否命题:若,则且,是真命题。命题的否认:若或,则,是假命题。知识点三:充足条件与必要条件:

1.定义:ﻫ对于“若p则q”形式的命题:ﻫ①若pq,则p是q的充足条件,q是p的必要条件;

②若pq,但qp,则p是q的充足不必要条件,q是p的必要不充足条件;

③若既有pq,又有qp,记作pq,则p是q的充足必要条件(充要条件).

2.理解认知:(1)在判断充足条件与必要条件时,一方面要分清哪是条件,哪是结论;然后用条件推结论,再用结论推条件,最后进行判断.(2)充要条件即等价条件,也是完毕命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.ﻫ3.判断命题充要条件的三种方法ﻫ(1)定义法:ﻫ(2)等价法:由于原命题与它的逆否命题等价,否命题与逆命题等价,因此,假如原命题与逆命题真假不好判断时,还可以转化为逆否命题与否命题来判断.即运用与;与;与的等价关系,对于条件或结论是不等关系(或否认式)的命题,一般运用等价法.ﻫ(3)运用集合间的包含关系判断,比如AB可判断为AB;A=B可判断为AB,且BA,即AB.

如图:ﻫ“”“,且”是的充足不必要条件.ﻫ“”“”是的充足必要条件.ﻫ6(2023安徽)下列选项中,p是q的必要不充足条件的是()(A)p:>b+d,q:>b且c>d(B)p:a>1,b>1q:的图像但是第二象限(C)p:x=1,q:(D)p:a>1,q:在上为增函数7(2023全国大纲)使成立的充足而不必要的条件是()(A)(B)(C)(D)8(2023福建).若a∈R,则“a=1”是“|a|=1”的()ﻩA.充足而不必要条件 B.必要而不充足条件ﻩC.充要条件ﻩD.既不充足又不必要条件9(2023江西)“”是“”的()A.必要不充足条件B.充足不必要条件C.充要条件D.既不充足也不必要条件ﻫ知识点四:全称量词与存在量词:

1.全称量词与存在量词:全称量词及表达:表达全体的量词称为全称量词。表达形式为“所有”、“任意”、“每一个”等,通常用符号“”表达,读作“对任意”。具有全称量词的命题,叫做全称命题。全称命题“对M中任意一个x,有p(x)成立”可表达为“”,其中M为给定的集合,p(x)是关于x的命题.

(II)存在量词及表达:表达部分的量称为存在量词。表达形式为“有一个”,“存在一个”,“至少有一个”,“有点”,“有些”等,通常用符号“”表达,读作“存在”。具有存在量词的命题,叫做特称命题特称命题“存在M中的一个x,使p(x)成立”可表达为“”,其中M为给定的集合,p(x)是关于x的命题.

ﻫ2.对具有一个量词的命题进行否认:

(I)对具有一个量词的全称命题的否认全称命题p:,他的否认:全称命题的否认是特称命题。

(II)对具有一个量词的特称命题的否认特称命题p:,他的否认:特称命题的否认是全称命题。

注意:

(1)命题的否认与命题的否命题是不同的.命题的否认只对命题的结论进行否认(否认一次),而命题的否命题则需要对命题的条件和结论同时进行否认(否认二次)。ﻫ(2)一些常见的词的否认:正面词等于大于小于是都是一定是至少一个至多一个否认词不等于不大于不小于不是不都是一定不是一个也没有至少两个

规律方法指导:

1.解答命题及其真假判断问题时,一方面要理解命题及相关概念,特别是互为逆否命题的真假性一致.

2.要注意区分命题的否认与否命题.

3.要注意逻辑联结词“或”“且”“非”与集合中的“并”“交”“补”是相关的,将二者互相对照可加深结识和理解.ﻫ4.解决充要条件问题时,一方面必须分清条件和结论。对于充要条件的证明,必须证明充足性,又要证明必要性;判断充要条件一般有三种方法:用集合的观点、用定义和运用命题的等价性;求充要条件的思绪是:先求必要条件,再证明这个必要条件是充足条件.ﻫ5.特别重视数形结合思想与分类讨论思想的运用。总结升华:

1.判断复合命题的真假的环节:ﻫ①拟定复合命题的构成形式;

②判断其中简朴命题p和q的真假;ﻫ③根据规定(或真假表)判断复合命题的真假.ﻫ2.条件“或”是“或”的关系,否认期要注意.

ﻫ类型二:四种命题及其关系:ﻫ10.写出命题“已知是实数,若ab=0,则a=0或b=0”的逆命题,否命题,逆否命题,并判断其真假。

解析:逆命题:已知是实数,若a=0或b=0,则ab=0,真命题;ﻫ否命题:已知是实数,若ab≠0,则a≠0且b≠0,真命题;

逆否命题:已知是实数,若a≠0且b≠0,则ab≠0,真命题。

总结升华:

1.“已知是实数”为命题的大前提,写命题时不应当忽略;ﻫ2.互为逆否命题的两个命题同真假;ﻫ3.注意区分命题的否认和否命题.

ﻫ类型三:全称命题与特称命题真假的判断:总结升华:ﻫ1.要判断一个全称命题是真命题,必须对限定的集合M中每一个元素,验证成立;要判断全称命题是假命题,只要能举出集合M中的一个,使不成立可;ﻫ2.要判断一个特称命题的真假,依据:只要在限定集合M中,至少能找到一个,使成立,则这个特称命题就是真命题,否则就是假命题.类型四:充要条件的判断:总结升华:ﻫ1.解决充足、必要条件问题时,一方面要分清条件与结论;

2.对的使用鉴定充要条件的三种方法,要重视等价关系转换,特别是与关系.ﻫﻫ类型五:求参数的取值范围:总结升华:由p或q为真,知p、q必有其一为真,由p且q为假,知p、q必有一个为假,所以,“p假且q真”或“p真且q假”.可先求出命题p及命题q为真的条件,再分类讨论.11.已知p:,q:,若p是q的一个充足不必要条件,求m的取值范围.12.命题p:关于x的不等式对任意恒成立;命题q:函数在R上递增若为真,而为假,求实数的取值范围。

总结升华:从认知已知条件切入,将四种命题或充要条件问题向集合问题转化,是解决这类问题的基本策略。ﻫ类型六:证明:ﻫﻫ总结升华:运用反证法证明时,一方面对的地作出反设(否认结论).从这个假设出发,通过推理论证,得出矛盾,从而假设不对的,原命题成立,反证法一般适宜结论自身以否认形式出现,或以“至多…”、“至少…”形式出现,或关于唯一性、存在性问题,或者结论的反面是比原命题更具体更容易研究的命题.ﻫ2.反证法时对结论进行的否认要对的,注意区别命题的否认与否命题.总结升华:ﻫ1.对于充要条件的证明,既要证明充足性,又要证明必要性,所以必须分清条件是什么,结论是什么。ﻫ2.充足性:由条件结论;必要性:由结论条件.叙述方式的变化(比如是的充足不必要条件”等价于“的充足不必要要条件是”).课后加油站1.(2023年湖北卷2)若非空集合满足,且不是的子集,则ﻩﻩ ﻩ ()A.“”是“”的充足条件但不是必要条件B.“”是“”的必要条件但不是充足条件C.“”是“”的充要条件D.“”既不是“”的充足条件也不是“”必要条件答案B2.(2023年湖南卷2)“成立”是“成立”的ﻩ()A.充足不必要条件 ﻩﻩﻩB.必要不充足条件 ﻩC.充足必要条件 D.既不充足也不必要条件ﻩ答案B3.(2023全国Ⅰ)设,是定义在R上的函数,,则“,均为偶函数”是“为偶函数”的ﻩ()A.充要条件 B.充足而不必要的条件C.必要而不充足的条件 D.既不充足也不必要的条件答案B4.(2023宁夏)已知命题:,则 ﻩ ﻩ ()A. B.C.D.答案C5.(2023重庆)命题:“若,则”的逆否命题是 ()A.若,则 B.若,则C.若,则 D.若,则答案D6.(2023山东)命题“对任意的”的否认是()A.不存在 ﻩ B.存在C.存在ﻩ ﻩD.对任意的答案C7.(2023年天津卷)设集合,,那么“”是“”的ﻩ ﻩ ﻩ ﻩ ﻩ ﻩﻩ ()A.充足而不必要条件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论