MFC处理高盐废水的最新研究进展,微生物论文_第1页
MFC处理高盐废水的最新研究进展,微生物论文_第2页
MFC处理高盐废水的最新研究进展,微生物论文_第3页
MFC处理高盐废水的最新研究进展,微生物论文_第4页
MFC处理高盐废水的最新研究进展,微生物论文_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MFC处理高盐废水的最新研究进展,微生物论文摘要:高盐废水通常采用生化、蒸发和膜处理3种方式方法处理,但无论采用何种方式方法,高盐废水处理均存在难度大和成本高等问题。微生物燃料电池(MFC)是一种基于产电微生物催化氧化有机物获得电能的装置,应用MFC处理废水可实如今处理废水的同时回收废水中能量,进而降低废水处理成本。近年来,应用MFC处理高盐废水来降低处理成本的研究逐步开展并成为一个研究热门。本文综述了MFC处理高盐废水研究的最新进展,分析了盐度对MFC产电、污染物脱除、微生物生长和群落的影响,基于耐盐微生物、生物膜、反响器构造及扩展应用等方面提出将来MFC处理高盐废水的研究方向。本文关键词语:废水;高盐;微生物燃料电池;降解;生物能源;引言随着国民经济的不断发展,淡水资源的消耗量逐年迅速上涨,水资源日渐匮乏,同时水体污染日趋严重。这严重危害着人类的健康,同时也威胁着人类的长期生存和发展。开发高效低成本废水处理技术具有重要意义。在各种废水中,高盐废水具有分布广、含无机盐离子浓度高、处理成本高等特点[1-2],是一种难处理废水[3]。若将未经处理的高盐废水直接排放,高度无机离子将导致江河水质矿化度提高[4],而废水中的氮、磷、有机物等会造成水体富营养化[5],同时高盐废水也造成土壤污染,甚至危及生态环境[6]。当前高盐废水通常采用电解法、膜分离法、生化法等技术进行处理,但这些技术均存在处理成本高、处理后水质不稳定的问题。开发高效低成本的高盐废水处理新技术是将来的发展方向[7]。微生物燃料电池(microbialfuelcell,MFC)是一种集废水资源化、污泥减量化、水质无害化的新型废水处理技术,具有广阔的应用前景[8-9]。使用微生物燃料电池,能够实现废水的高效低成本处理[10-11],有望突破高盐废水处理成本高、难度大的窘境,因此遭到了广泛关注[12-13]。本文的目的是总结微生物燃料电池在高盐废水处理方面的研究进展,着重分析盐度对微生物、产电、污染物脱除的影响,在这里基础上,提出将来微生物燃料电池处理高盐废水的研究方向,以期促进该领域的快速发展。1、高盐废水的产生与处理高盐废水指生产生活经过中产生的总含盐质量分数大于1%的废水[14]。高盐废水中不仅含有较高浓度的Cl-、SO42-、Na+、Ca2+等无机离子,而且含有氮、磷、中低碳链有机物等。高盐废水主要来源于两方面:一是工业生产经过中排放出的高含盐的有机废水[15],如纺织、印染、食品腌制、造纸、化工、农药等行业[16];二是海水直接应用所产生的废水[17],如海水用于电力、钢铁、化工、机械制造等行业的冷却所产生的废水,和沿海城市将海水用于道路和厕所冲洗、消防以及游泳娱乐等方面所产生的废水[18]。在世界范围内,高盐废水排放量约占废水总排放量的5%,年增长率约为2%[19]。高盐废水处理已成为废水处理的重要组成部分[20]。当前对于含盐废水的处理主要有电解[13,21]、燃烧[22-23]、膜分离[24-25]、深井灌注[26-27]、生物处理[28-30]以及物理化学处理[31-32]等方式。华而不实,电解法对污水的适应性较强,去除效果好[33],但运行费用高[34];燃烧法具有简便、彻底的优势,但仅适宜处理有机物浓度高、热值高的高盐废水,而对低热值的高盐废水,存在燃烧前需要调整pH、添加燃料[35],且燃烧后需要进行尾气处理等问题[36];膜分离处理工艺简单、不会造成二次污染[37],但运行费用较高,且膜容易堵塞[38];深井灌注处理操作简便,但会导致土壤和地下水遭到污染[2]。生物处理法具有应用范围广、适应性强、经济性好、处理效率高等特点[39],是含盐废水处理最常用的方式方法[40],但生物法大多适用于处理盐度低于3.5%的废水[41]。物理化学方式方法能够处理更高层次盐度的废水,但不能有效去除废水中所含有的溶解性有机物[2,42],因而物理化学方式方法通常作为生物处理法的前处理,用以躲避盐度限制。废水处理是高耗能行业[43],据统计,2018年我们国家污水处理厂单位水量电耗、单位COD削减电耗、单位耗氧污染物削减电耗平均值分别为0.293kWhm-3、1.594kWhkg-1、1.991kWhkg-1;对于包含高盐废水在内的难处理废水,其单位水量电耗、单位COD削减电耗、单位耗氧污染物削减电耗平均值更是分别高达0.471kWhm-3、2.603kWhkg-1、3.249kWhkg-1[44]。通常,我们国家每年在废水处理行业消耗的电量约占发电总量的1%[45]。2、微生物燃料电池处理高盐废水的研究现在状况微生物燃料电池是一种利用微生物作为催化剂,氧化/复原污水中的有机和无机污染物,实现废水处理从耗能向产能的转化的装置[46-47]。在微生物燃料电池中,阳极微生物催化氧化有机污染物和含低价态氮、硫元素的污染物,同时产生H+和电子,H+和电子分别经过溶液和外电路传递到阴极,在阴极处电子受体与电子、H+结合,发生复原反响,完成整个氧化复原反响[48-49],同时电子不断流过外电路而产生电能[50-51]。若溶液中含有较高浓度的金属离子,还可能在阴极发生金属离子复原,到达回收金属的目的[52-53]。当微生物燃料电池处理高盐废水时,高浓度的阴阳离子使离子迁移速度加快,因此废水具有良好的导电性,能够显着降低MFC内阻,有利于MFC产电。但高盐环境也会影响微生物的代谢和生长,进而影响MFC中微生物的种群和群落构造,可能对MFC的产电和污染物脱除效果产生不利影响。因而,盐度是影响微生物燃料电池处理高盐废水时产电和污染物脱除性能的主要因素之一。微生物燃料电池处理高盐废水具有无能量投入、成本低、适应性广、经过高效、产物清洁,且能回收废水处理中电能的特点[54-56],对解决高盐废水处理中存在的处理成本高、效率低、出水水质不稳定、存在二次污染等问题[57-59]具有宏大的潜力。应用微生物燃料电池处理高盐废水,能够回收废水中的能量,同时到达脱氮[60-61]和降解有机物[62-63]、脱硫[64-65]、除磷[66-67]、回收金属[68-70]等效能。2.1MFC处理高盐废水时的产电性能2.1.1盐度对MFC处理高盐废水时产电性能的影响提高盐度将对MFC的产电性能产生两方面的影响:一方面,废水盐度增加会提高溶液电导率和质子传递能力,降低电池内阻,有利于反响器产电性能的提高;另一方面,高盐度会对产电微生物的新陈代谢及酶活性产生抑制作用,不利于电池的产电。研究人员对盐度影响MFC产电性能的研究得出了不同的结果。罗勇等[12]采用序批式双室化学阴极MFC研究了阳极液中NaCl浓度从0提高到70gL-1对MFC性能的影响,发现随着阳极液NaCl浓度逐步提高,MFC的最大输出电压逐步从660mV下降到130mV,最大输出功率密度从34Wm-3下降到1.4Wm-3,库仑效率也从67%急剧下降到4%,表示清楚提高阳极溶液盐度降低MFC产电性能;与此同时,刘明等[71]研究了连续流双室生物阴极MFC,发现当阴极溶液的NaCl浓度从0提高到24.5gL-1时,MFC的最大输出功率密度从2.5Wm-3下降到0.515Wm-3,表示清楚提高盐度对生物阴极也产生不利影响。除此之外,Wang等[72]研究序批式空气阴极单室MFC中盐度及催化剂对产电性能的影响时发现,当以CoTMPP和AC作催化剂时,MFC的产电性能均随盐度的升高而下降。然而Liu等[73]以序批式单室MFC为反响器研究盐度对产电性能的影响时得出相反的结果,他们发现:随着溶液中NaCl浓度从5.84gL-1提高到23.36gL-1,MFC最大输出功率从18Wm-3上升到33.25Wm-3,表示清楚盐度提高有助于MFC产电。也有研究表示清楚在双室MFC中增加阳极溶液的盐度能提高MFC的产电功率。如Miyahara等[74]发现随着阳极液NaCl浓度从0提高到5.84gL-1,MFC最大输出功率提高了近4倍,从2.58Wm-3上升到11.42Wm-3。在一种连续流双室MFC中,当阳极溶液的NaCl浓度从0提高到20gL-1时,MFC的最大输出功率从27Wm-3上升到35Wm-3[75]。这些研究表示清楚盐度对MFC产电性能的影响可能与反响器构造、微生物种类、运行条件等因素有关。图1总结了现有文献报道中,不同盐度下微生物燃料电池的最大功率密度[12,71-78]。固然不同研究者得出的盐度对MFC产电性能的影响的结论不同,但从图中能够看出,盐度对MFC产电性能的影响大致呈现一趋势:在NaCl浓度低于20gL-1时,随着盐度的提高,反响器的最大功率密度提高;而当NaCl浓度高于20gL-1时,随着盐度的提高,反响器的最大功率密度下降。研究表示清楚:0~20gL-1NaCl浓度是种类繁多的非嗜盐菌和弱嗜盐菌适宜生长的盐度范围[79],在这里盐度范围内,产电菌可能很容易适应盐度的变化,其活性不受盐度变化的影响,而增加盐度提高了溶液电导率,因此降低反响器内阻,提高MFC产电性能;但当NaCl浓度高于20gL-1时,非嗜盐菌和弱嗜盐菌生长遭到抑制,提高盐度对微生物活性产生严重抑制作用,微生物活性降低导致反响器产电性能下降,且产电性能下降的效果比降低内阻导致反响器产电性能提升的效果愈加显着。因而,反响器的产电性能随盐度的增加而显着降低。2.1.2反响器构造对MFC处理高盐废水时产电性能的影响反响器构造对MFC处理高盐废水时产电性能的影响还未见研究报道,但从现有的研究结果来看,反响器构造对MFC处理高盐废水时产电性能的影响与对MFC处理低盐度废水时的影响大致一样,单室MFC的产电功率高于双室MFC[12,73],双室生物阴极MFC的最大输出功率密度显着低于双室化学阴极MFC[12,71]。然而处理高盐废水时,MFC以序批式运行时其最大功率密度比连续流运行时高[71-72],这与其他应用场合有所不同。2.2盐度对MFC污染物脱除效果的影响当前,将微生物燃料电池应用于高盐废水处理时,污染物的利用与脱除对象主要为有机物和含氮物质,而在含磷物质、含硫物质的脱除以及金属回收等方面的研究还很少。2.2.1盐度对有机物脱除效果的影响微生物燃料电池处理废水时,盐度对有机物脱除效果的影响是盐度对微生物代谢速度及酶活性的影响造成的。研究表示清楚,适当的盐度有利于提高微生物代谢速度及酶活性,进而提升有机物的去除效果,但过高盐度会抑制微生物代谢速度及酶活性,进而阻碍有机物的去除[80]。为了研究盐度对有机物脱除效果的影响,刘明等[71]研究了盐度对连续流双室生物阴极MFC脱氮除碳性能的影响,发如今控制反响器COD浓度一样的条件下,当NaCl浓度分别为0、3.5、10.5、17.5gL-1时,COD去除率分别为99%、98%、95%、94%,而当NaCl浓度为24.5gL-1时,COD去除率仅为80%,表示清楚有机物脱除效果随盐度增加而逐步下降。而Lefebvre等[75]研究了连续流双室空气阴极MFC中阳极液的NaCl浓度对有机物脱除效果的影响,却发现当反响器阳极液中不添加NaCl时,COD去除率为27%5%,分别添加5、10、20gL-1NaCl时,COD去除率分别提升到31%1%、37%3%、42%1%,但当NaCl浓度提高到40gL-1时,COD去除率下降至26%2%,表示清楚随着盐度的提高,MFC对有机物的脱除效果先提升后下降。这些研究结果讲明阴极类型会影响盐度变化时MFC对有机物的脱除效果,今后还需要对不同盐度下,不同类型的阴极对有机物的脱除效果及其规律进行更具体的探究。2.2.2盐度对含氮物质脱除效果的影响盐度影响微生物代谢速度及酶活性的同时,也影响MFC脱除含氮物质的效果。Dincer等[81]研究了不同NaCl浓度下系统的硝化效率,发现NaCl浓度为0时,系统硝化效率为100%,而NaCl浓度分别提高到10、30、50、60gL-1时,硝化效率分别降至95%、90%、55%、40%,表示清楚随着盐度的升高,微生物的硝化效率逐步降低。Rosa等[82]在研究含盐废水的硝化时也发现,当反响器中NaCl浓度从25gL-1提高到50gL-1时,氨氮去除率由95%下降到50%。他们在随后的研究中再次证实了MFC的硝化性能随盐度的升高而下降[83]。盐度对反硝化性能影响的研究得到了不同的结论。Dincer等[81]研究了不同NaCl浓度下系统的反硝化效率,发现NaCl浓度从0分别提升至50gL-1和60gL-1时,体系的反硝化效率分别降到60%和30%,表示清楚随着盐度的提升,反硝化性能下降。郭姿璇等[84]探究了盐度对未驯化微生物活性的影响,发现NaCl浓度为0时,比亚硝酸盐反硝化速率(SNIDR)和比硝酸盐反硝化速率(SNADR)活性均为100%,当添加15gL-1NaCl时,SNIDR和SNADR活性分别下降到57%和74%,而当NaCl浓度增加到40gL-1时,SNIDR和SNADR活性均显着下降到5%下面,同样发现盐度提升不利于反硝化。然而,Yoshie等[85]在研究含盐废水中高反硝化活性细菌的特性时却发现,当NaCl浓度为10.47gL-1时,系统的反硝化速率为1.1kgNm-3d-1,而NaCl浓度增加到13.89gL-1时,系统的反硝化速率增加到2.5kgNm-3d-1,表示清楚随着盐度的提升,系统的反硝化性能得到提高。当前盐度对反硝化性能的影响机理尚不明确,但可能与盐度影响含氮化合物氧化复原酶活性有关。表1列举了不同盐度下硝化反硝化酶活性的变化,从表中能够看出,随着NaCl浓度从0逐步增加到24.5gL-1,亚硝酸盐复原酶(NIR)的活性逐步减小,而氨单加氧化酶(AMO)、亚硝酸盐氧化酶(NOR)以及硝酸盐复原酶(NR)的活性均先增大,后减小。2.3盐度对MFC中微生物生长和群落的影响2.3.1盐度对MFC中微生物生长的影响盐度是高盐废水区别于其他废水最显着的特征。由高盐所带来的溶液导电性、蒸气压、离子扩散性等物理性质改变,会导致微生物生长特性和群落构造的改变,进而影响微生物燃料电池的产电以及污染物的脱除。研究表示清楚,适当盐度的培养液含有丰富的离子,能够为微生物的生长发育提供必须的营养元素,因此提高盐度可提高微生物活性。但当环境盐度过高时,一方面高盐度会对微生物产生盐析作用,造成普通微生物的脱氢酶活性降低[86],抑制微生物的生长[87],如表2所示,随着盐度的增加,脱氢酶活性显着下降;另一方面,高盐度会使微生物细胞内的水的浸透压升高,细胞内外的浸透压差会引起微生物细胞脱水,产生质壁分离,最终将导致微生物细胞过度失水而死亡[88]。除此之外,高盐培养液中含有的高浓度的无机离子还可能毁坏细胞膜的选择透过性,进入细胞内,对微生物产生毒害作用,导致其死亡[89]。盐度的突变会对微生物的生长造成冲击,微生物的新陈代谢会遭到抑制,当冲击负荷过高时还可能导致微生物细胞的组分分解[40]。然而,当盐度缓慢地逐步从低增高时,微生物会通过本身的浸透压调节机制来平衡细胞内水的浸透压,使其耐盐性能加强,获得在高盐环境下的生存能力[90]。还有一些微生物具有某些特殊基因,在高盐环境中,这些基因将会表示出,使其具有一些特殊的构造,进而能够抵御高盐环境[91],如在盐湖、深海等极端环境中生长的嗜盐菌[92]。嗜盐菌具有大量分布在特殊蛋白质和细胞壁上且带负电的氨基酸和脂类物质[93],这种独特的生物构造,有助于微生物细胞内带正电的物质的累积,进而使嗜盐菌能够耐受极高的盐度[94]。2.3.2盐度对MFC中微生物群落的影响不同种类的微生物适宜生长的盐浓度也不同,对盐度的耐受阈值也不同,因而盐度会对微生物产生选择作用[95],影响微生物群落构造及其多样性[96]。表3为根据不同盐度对细菌的分类和各类别的典型菌种。为了研究盐度对微生物群落构造的影响,一些学者通过改变盐浓度来探究微生物群落中优势菌的变化。采用逐步提高盐浓度以驯化微生物处理橡胶废水时发现:当NaCl浓度从18gL-1提高到28gL-1时,细菌优势种属发生变化,最后假单胞杆菌成为优势菌属,且含量超过80%[97],表示清楚盐度变化会影响微生物群落中的优势种属。在这里基础上,何健等[98-99]研究了逐步提高盐浓度的方式方法驯化微生物来处理含盐废水,发现当NaCl浓度从较低值逐步提高到45gL-1时,系统的优势菌属从邻单胞菌属变为节细菌属,也证明了盐度会影响微生物群落中的优势菌属。除此之外,罗勇等[12]对分别添加0、40、70gL-1NaCl的MFC的微生物群落构造进行16SrDNA基因片段分析,发现当NaCl浓度从0提高到40gL-1时,阳极微生物群落构造没有明显变化,而当NaCl浓度提高到70gL-1时,群落构造发生明显变化,华而不实Enterobactersp.和Shewanellasp.由于不能适应高盐度而消失,微生物优势群落变为未培养土壤细菌(unculturedsoilbacteriumclone),表示清楚盐度对MFC微生物构造的影响可能还存在一个分界值,超过此盐度值时,盐度变化会对微生物的群落构造产生影响,而低于此盐度值时,盐度变化不会对微生物的群落构造产生明显影响。基于此,Miyahara等[74]系统研究了NaCl浓度对单室MFC阳极微生物的影响,发现NaCl浓度低于5.84gL-1时,Geobacterspp.在MFC阳极大量富集,而当NaCl浓度高于17.53gL-1时,阳极Geobacterspp.数量显着减少,而Gammaproteobacteria和Bacilli含量大幅增加。除此之外,盐度对MFC的微生物多样性产生影响。Wu等[100]研究了分别在添加10gL-1和40gL-1NaCl的人工废水中运行68d的MFC的微生物群落构造,发如今两种盐度下运行的MFC的微生物群落构造相差显着,在40gL-1NaCl下运行的MFC生物多样性比在10gL-1NaCl下运行的MFC的生物多样性少40%,表示清楚盐度提高使MFC微生物的群落构造多样性减少。然而,当以嗜盐沉积物为接种源处理不同盐度的高有机物废水却发现:当NaCl浓度从25gL-1提高到121gL-1时,反响器的生物多样性并未发生显着改变,16SrDNA结果显示体系中耐盐微生物占大多数,且其群落多样性高[18],表示清楚盐度对微生物群落多样性的影响还与接种源有关。当接种源为非耐盐菌时,盐度变化对生物群落构造和多样性产生显着影响;而当接种源为耐盐菌时,盐度变化对生物群落构造和多样性不产生显着影响。3、结论与瞻望高盐废水总量大、处理成本高,是一种典型的难处理废水。MFC作为一种新型的废弃物利用化处理技术,具有电能回收和污染物处理双重成效,是废水处理方面的研究热门。将MFC引入高盐废水处理领域能够为高盐废水处理提供一种新思路,可望解决高盐废水处理成本高和稳定性差的问题。MFC处理高盐废水的研究成果表示清楚:盐度对MFC的产电和废水处理效果均产生影响。MFC的产电性能随着盐度升高先提升后下降,当NaCl约为20gL-1时,反响器的产电性能最佳。以序批式运行的处理高盐废水的MFC其产电性能优于以连续流运行,这与低盐度下的结果有所不同。盐度对有机物的脱除效果因不同系统而不同,对生物阴极MFC,有机物的脱除效率随盐度增加而下降,而对空气阴极MFC,有机物的脱除效率则随盐度增加先升高后下降。随着盐度的增加,系统的硝化性能逐步下降,而系统的反硝化呈现不一致的研究结果,可能与盐度影响含氮化合物氧化复原酶活性有关。盐度对群落构造及其多样性的影响取决于接种源,当接种源为非耐盐菌时,盐度变化对生物群落构造和多样性产生显着影响;而当接种源为耐盐菌时,盐度变化对生物群落构造和多样性不产生显着影响。固然MFC应用于高盐废水处理实现了产电和同步脱除碳氮污染物的效果,在盐度对产电和污染物脱除效果的影响方面也开展了深切进入研究,但当前MFC处理高盐废水仍然存在很多问题:一方面,微生物燃料电池处理高盐废水经过中,阳极微生物的生长代谢、群落演替以及有机物与含氮污染物的作用经过和机制还不清楚明晰,导致出现一些表观上相悖的结论;另一方面,当前脱除污染物仅研究了有机物和含氮物质,而脱硫、除磷、回收金属等的研究还未牵涉。今后MFC处理高盐废水的研究应开展下面几方面工作。(1)高耐盐电化学活性微生物菌株的挑选和培养,在开发耐盐微生物菌株接种、驯化和生物膜生长有效途径的同时,利用当代基因工程技术,对微生物进行基因改造,提高其高盐度的耐受性。(2)研究高盐环境下,产电生物膜的构成经过、生物膜的构造特征,查明微生物电化学经过与耐盐生物膜的稳定性能否存在一定的关系,提升MFC处理高盐废水的稳定性。(3)反响器构造设计与优化,开展单室和双室构造反响器、温度、pH、溶解氧、污染物浓度、电极间距和空气阴极稳定性研究,查明影响高盐微生物产电性能的关键因素。除此之外,结合数值模拟进行反响热力学和动力学分析,探究不同条件对MFC性能影响的机理。(4)开展微生物燃料电池在高盐废水中脱硫、除磷、回收金属等功能的研究,开发微生物燃料电池与其他废水处理技术的组合工艺。以下为参考文献[1]DALMACIJAB,KARLOVICE,TAMASZ,etal.Purificationofhigh-salinitywastewaterbyactivatedsludgeprocess[J].WaterResearch,1996,30(2):295-298.[2]SHIX,LEFEBVREO,NGKK,etal.Sequentialanaerobic-aerobictreatmentofpharmaceuticalwastewaterwithhighsalinity[J].BioresourceTechnology,2020,153(2):79-86.[3]ZHOUG,WANGZ,LIW,etal.Graphene-oxidemodifiedpolyvinyl-alcoholasmicrobialcarriertoimprovehighsaltwastewatertreatment[J].MaterialsLetters,2021,156:205-208.[4]DANNP,VISVANATHANC,BASUB.Comparativeevaluationofyeastandbacterialtreatmentofhighsalinitywastewaterbasedonbiokineticcoefficients[J].BioresourceTechnology,2003,87(1):51-56.[5]REIDE,LIUX,JUDDSJ.Effectofhighsalinityonactivatedsludgecharacteristicsandmembranepermeabilityinanimmersedmembranebioreactor[J].JournalofMembraneScience,2006,283(1):164-171.[6]WUY,TAMNF,WONGMH.Effectsofsalinityontreatmentofmunicipalwastewaterbyconstructedmangrovewetlandmicrocosms[J].MarinePollutionBulletin,2008,56(7):727-734.[7]QINL,LIUQ,MENGQ,etal.AnoxicoscillatingMBRforphotosyntheticbacteriaharvestingandhighsalinitywastewatertreatment[J].BioresourceTechnology,2021,224:69-77.[8]NITISORAVUTR,REGMIR.Plantmicrobialfuelcells:apromisingbiosystemsengineering[J].RenewableSustainableEnergyReviews,2021,76:81-89.[9]TRAPEROJR,HORCAJADAL,LINARESJJ,etal.Ismicrobialfuelcelltechnologyready?Aneconomicanswertowardsindustrialcommercialization[J].AppliedEnergy,2021,185:698-707.[10]LIUH,LOGANBE.Electricitygenerationusinganair-cathodesinglechambermicrobialfuelcellinthepresenceandabsenceofaprotonexchangemembrane[J].EnvironmentalScienceTechnology,2004,38(14):4040-4046.[11]MINB,LOGANBE.Continuouselectricitygenerationfromdomesticwastewaterandorganicsubstratesinaflatplatemicrobialfuelcell[J].EnvironmentalScienceTechnology,2004,38(21):5809-5814.[12]罗勇,骆海萍,覃邦余,等.盐度对MFC产电及其微生物群落的影响[J].中国环境科学,2020,33(5):832-837.LUOY,LUOHP,QINBY,etal.Effectsofsalinityonpowergenerationandthemicrobialcommunitystructureinthemicrobialfuelcells[J].ChinaEnvironmentalScience,2020,33(5):832-837.[13]李凤娟,徐菲,李小龙,等.高盐度废水处理技术研究进展[J].环境科学与管理,2020,39(2):72-75.LIFJ,XUF,LIXL,etal.Researchontreatmentofhighsalinitywastewater[J].EnvironmentalScienceandManagement,2020,39(2):72-75.[14]李玲玲.高盐度废水生物处理特性研究[D].青岛:中国海洋大学,2006.LILL.Studyofbiologicaltreatmentofhigh-salinitywastewater[D].Qingdao:OceanUniversityofChina,2006.[15]文湘华,占新民,王建龙,等.含盐废水的生物处理研究进展[J].环境科学,1999,20(3):104-106.WENXH,ZHANXM,WANGJL,etal.Reviewofthebiologicaltreatmentofsalinitywastewater[J].EnvironmentalScience,1999,20(3):104-106.[16]安立超,严学亿,胡磊,等.嗜盐菌的特性与高盐废水生物处理的进展[J].环境污染与防治,2002,24(5):293-296.ANLC,YANXY,HUL,etal.Reviewofcharacteristicofhalophilicandbiologicaltreatmentofhapersalinewastewater[J].EnvironmentalPollutionControl,2002,24(5):293-296.[17]尤作亮,蒋展鹏,祝万鹏,等.海水直接利用及其环境问题分析[J].给水排水,1998,24(3):64-67.YOUZL,JIANGZP,ZHUWP,etal.Analysisofseawaterdirectutilizationanditsenvironmentalproblems[J].JournalofWaterSupplyandSewerage,1998,24(3):64-67.[18]邹高龙.盐度变化对含氨氮废水处理的影响[D].长沙:湖南大学,2008.ZOUGL.Effectofsalinityvariationonthetreatmentwastewatercontainingammonia[D].Changsha:HunanUniversity,2008.[19]LEFEBVREO,HABOUZITF,BRUV,etal.Treatmentofhypersalineindustrialwastewaterbyamicrobialconsortiuminasequencingbatchreactor[J].EnvironmentalTechnology,2004,25(5):543-554.[20]LEFEBVREO,MOLETTAR.Treatmentoforganicpollutioninindustrialsalinewastewater:aliteraturereview[J].WaterResearch,2006,40(20):3671-3682.[21]LINSH,SHYUCT,SUNMC.Salinewastewatertreatmentbyelectrochemicalmethod[J].WaterResearch,1998,32(4):1059-1066.[22]MAJY,MAZY,YANJH,etal.Developmentofanevaporationcrystallizerfordesalinationofalkalineorganicwastewaterbeforeincineration[J].JournalofZhejiangUniversityScienceA,2005,6(10):1100-1106.[23]钟璟,韩光鲁,陈群.高盐有机废水处理技术研究新进展[J].化工进展,2020,31(4):920-926.ZHONGJ,HANGL,CHENQ.Recentdevelopmentsintreatmenttechnologyforhighlysalineorganicwastewater[J].ChemicalIndustryandEngineeringProgress,2020,31(4):920-926.[24]李柄缘,刘光全,王莹,等.高盐废水的构成及其处理技术进展[J].化工进展,2020,33(2):493-497.LIBY,LIUGQ,WANGY,etal.Formationandtreatmentofhigh-saltwastewater[J].ChemicalIndustryandEngineeringProgress,2020,33(2):493-497.[25]吴雅琴,杨波,申屠勋玉,等.膜集成技术在高含盐废水资源化中的应用[J].水处理技术,2021,42(7):118-120.WUYQ,YANGB,SHENTUXY,etal.Applicationofmembranecombinedprocessinhighsalinewastewaterrecycling[J].TechnologyofWaterTreatment,2021,42(7):118-120.[26]杨运,吴吉春,唐甜.深井地下灌注数值模型SWIFT[J].高校地质学报,2018,16(1):45-52.YANGY,WUJC,TANGT.SWIFT:numericalmodelfordeep-wellinjection[J].GeologicalJournalofChinaUniversities,2018,16(1):45-52.[27]王晓华,于景琦,陈宏坤,等.美国工业废液地下灌注与控制技术介绍[J].油气田环境保卫,2007,17(3):41-44.WANGXH,YUJQ,CHENHK,etal.UndergroundinjectionandcontrolofindustrywasteliquidinUSA[J].EnvironmentalProtectionofOilGasFields,2007,17(3):41-44.[28]INGRAMM.TheinfluenceofsodiumchlorideandtemperatureontheendogenousrespirationofB.cereus[J].JournalofGeneralPhysiology,1940,23(6):773-780.[29]TOKUZRY,ECKENFELDERWWJR.Theeffectofinorganicsaltsontheactivatedsludgeprocessperformance[J].WaterResearch,1979,13(1):99-104.[30]KARGIF,UYGURA.Biologicaltreatmentofsalinewastewaterinanaeratedpercolatorunitutilizinghalophilicbacteria[J].EnvironmentalTechnology,1996,17(3):325-330.[31]IMAIA,ONUMAK,INAMORIY,etal.Biodegradationandadsorptioninrefractoryleachatetreatmentbythebiologicalactivatedcarbonfluidizedbedprocess[J].WaterResearch,1995,29(2):687-694.[32]MOHAMEDAMO,MARAQAM,HANDHALYJA.Impactoflanddisposalofrejectbrinefromdesalinationplantsonsoilandgroundwater[J].Desalination,2005,182(1):411-433.[33]高彦林,张雁秋,薛方亮.铁碳微电解法处理某化工厂废水的研究[J].江苏环境科技,2006,19(5):11-13.GAOYL,ZHANGYQ,XUEFL.Treatmentofchemicalwastewaterbyferric-carbonmicro-electrolysismethod[J].JiangsuEnvironmentalScienceandTechnology,2006,19(5):11-13.[34]王宏,郑一新,钱彪,等.电解凝絮法处理高盐度有机废水的实验研究[J].环境科学研究,2001,14(2):51-53.WANGH,ZHENGYX,QIANB,etal.Thetreatmentofhigh-salinityorganicwastewaterbyelectrocoagulation[J].ResearchofEnvironmentalSciences,2001,14(2):51-53.[35]王伟,刘豪杰,张桂风.燃烧法处理高浓度有机、含盐废水的研究分析[J].黑龙江环境通报,2008,32(3):70-71.WANGW,LIUJJ,ZHANGGF.Researchandanalysisoftreatmentofhighconcentrationandhighsaltwastewaterwithburningmethod[J].HeilongjiangEnvironmentalJournal,2008,32(3):70-71.[36]孔峰,张晓叶,程洁红.蒸发浓缩-燃烧法处理高浓度医药中间体废液方案设计[J].环境工程,2018,28(4):37-38.KONGF,ZHANGXY,CHENGJH.Conceptualdesignoftreatmentofmedicalwastewaterwithhighorganicsbyevaporationandconcentration-incineration[J].JournalofEnvironmentalEngineering,2018,28(4):37-38.[37]KIMDH.Areviewofdesaltingprocesstechniquesandeconomicanalysisoftherecoveryofsaltsfromretentates[J].Desalination,2018,270(1):1-8.[38]SCHOFIELDRW,FANEAG,FELLCJD,etal.Factorsaffectingfluxinmembranedistillation[J].Desalination,1990,77(90):279-294.[39]KINCANNONDF,GAUDYAF.Someeffectsofhighsaltconcentrationsonactivatedsludge[J].JournaloftheWaterPollutionControlFederation,1966,38(7):1148-1159.[40]KINCANNONDF,GAUDYAF.Responseofbiologicalwastetreatmentsystemstochangesinsaltconcentrations[J].BiotechnologyBioengineering,1968,10(4):483-496.[41]REIDE,LIUX,JUDDSJ.Effectofhighsalinityonactivatedsludgecharacteristicsandmembranepermeabilityinanimmersedmembranebioreactor[J].JournalofMembraneScience,2006,283(1/2):164-171.[42]吴晶.多效蒸发处理高盐废水及其化工模拟经过[D].上海:华东理工大学,2020.WUJ.Multi-effectevaporationtotreathighsaltwaterandthesimulationprocessofit[D].Shanghai:EastChinaUniversityofScienceandTechnology,2020.[43]蒋勇,阜葳,毛联华,等.城市污水处理厂运行能耗影响因素分析[J].北京交通大学学报,2020,38(1):33-37.JIANGY,FUW,MAOLH,etal.Influencefactorsanalysisofurbansewagetreatmentplantonenergyconsumption[J].JournalofBeijingJiaotongUniversity,2020,38(1):33-37.[44]高旭,龙腾锐,郭劲松.城市污水处理能耗能效研究进展[J].重庆大学学报(自然科学版),2002,25(6):143-148.GAOX,LONGTR,GUOJS.Researchprogressofenergyefficiencyofmunicipalwastewatertreatment[J].JournalofChongqingUniversity(NaturalScienceEdition),2002,25(6):143-148.[45]赵正权,徐冬,张浩,等.中国污水处理电耗分析和节能途径[J].科技导报,2018,28(22):43-47.ZHAOZQ,XUD,ZHANGH,etal.Powerconsumptionofwastewatertreatmentandthemeasuresofenergysaving[J].ScienceTechnologyReview,2018,28(22):43-47.[46]LOGANBE,REGANJM.Microbialfuelcellschallengesandapplications[J].EnvironmentalScienceTechnology,2006,40(17):5172-5180.[47]LOGANBE,HAMELERSB,ROZENDALR,etal.Microbialfuelcells:methodologyandtechnology[J].EnvironmentalScienceTechnology,2006,40(17):5181-5192.[48]LIUH,CHENGS,LOGANBE.Productionofelectricityfromacetateorbutyrateusingasingle-chambermicrobialfuelcell[J].EnvironmentalScienceTechnology,2005,39(2):658-662.[49]LOGANBE,MURANOC,SCOTTK,etal.Electricitygenerationfromcysteineinamicrobialfuelcell[J].WaterResearch,2005,39(5):942-952.[50]刘伟凤.微生物燃料电池碳基电极的界面调控与电化学性能强化[D].杭州:浙江大学,2021.LIUWF.Regulationofelectrodeinterfaceforenhancingtheelectrochemicalpropertiesofcarbon-basedelectrodesinmicrobialfuelcells[D].Hangzhou:ZhejiangUniversity,2021.[51]陈杰.针对微生物燃料电池扩大化的新型空气阴极开发研究[D].杭州:浙江大学,2021.CHENJ.Researchanddevelopmentofnovelcathodeforthescaling-upofmicrobialfuelcell[D].Hangzhou:ZhejiangUniversity,2021.[52]CHOIC,HUN,LIMB.Cadmiumrecoverybycouplingdoublemicrobialfuelcells[J].BioresourceTechnology,2020,170(5):361-369.[53]DUTEANUNM,GHANGREKARMM,ERABLEB,etal.Microbialfuelcellsanoptionforwastewatertreatment[J].EnvironmentalEngineeringManagementJournal,2018,9(8):1069-1087.[54]DUZ,LIH,GUT.Astateoftheartreviewonmicrobialfuelcell:apromisingtechnologyforpowergenerationandwastewatertreatment[J].BiotechnologyAdvances,2007,5(25):464-482.[55]HARNISCHF,SCHRODERU.FromMFCtoMXC:chemicalandbiologicalcathodesandtheirpotentialformicrobialbioelectrochemicalsystems[J].ChemicalSocietyReviews,2018,39(11):4433-4448.[56]RABAEYK,LISSENSG,SICILIANOSD,etal.Amicrobialfuelcellcapableofconvertingglucosetoelectricityathighrateandefficiency[J].BiotechnologyLetters,2003,25(18):1531-1535.[57]GUIGC,CHANGIS,KIMBH,etal.Operationalparametersaffectingtheperformanceofamediator-lessmicrobialfuelcell[J].BiosensorsBioelectronics,2003,18(4):327-34.[58]RABAEYK,LISSENSG,SICILIANOSD,etal.Amicrobialfuelcellcapableofconvertingglucosetoelectricityathighrateandefficiency[J].BiotechnologyLetters,2003,25(18):1531-1535.[59]HEL,DUP,CHENY,etal.Advancesinmicrobialfuelcellsforwastewatertreatment[J].RenewableSustainableEnergyReviews,2021,71:388-403.[60]VIRDISB,RABAEYK,ROZENDALRA,etal.Simultaneousnitrificationanddenitrification(SND)atamicrobialfuelcell(MFC)biocathode[J].JournalofBiotechnology,2018,150(1):153-154.[61]ZHANGJ,ZHENGP,ZHANGM,etal.Kineticsofsubstratedegradationandelectricitygenerationinanodicdenitrificationmicrobialfuelcell(AD-MFC)[J].BioresourceTechnology,2020,149(4):44-50.[62]MAYERSJJ,FLYNNKJ,SHIELDSRJ.InfluenceoftheN:Psupplyratioonbiomassproductivityandtime-resolvedchangesinelementalandbulkbiochemicalcompositionofNannochloropsissp[J].BioresourceTechnology,2020,169(5):588-595.[63]HAPPEM,SUGNAUXM,CACHELINCP,etal.Scale-upofphosphateremobilizationfromsewagesludgeinamicrobialfuelcell[J].BioresourceTechnology,2021,200:435-443.[64]YUANSJ,SHENGGP,LIWW,etal.Degradationoforganicpollutantsinaphotoelectrocatalyticsystemenhancedbyamicrobialfuelcell[J].EnvironmentalScienceTechnology,2018,44(14):5575-5580.[65]LEFEBVREO,ALMAMUNA,NGHY.Amicrobialfuelcellequippedwithabiocathodefororganicremovalanddenitrification[J].WaterScienceTechnologyAJournaloftheInternationalAssociationonWaterPollutionResearch,2008,58(4):881-885.[66]TAOQ,LUOJ,ZHOUJ,etal.Effectofdissolvedoxygenonnitrogenandphosphorusremovalandelectricityproductioninmicrobialfuelcell[J].BioresourceTechnology,2020,164:402-407.[67]FENGZ,RAHUNENN,VARCOEJR,etal.Factorsaffectingtheperformanceofmicrobialfuelcellsforsulfurpollutantsremoval[J].BiosensorsBioelectronics,2018,24(7):1931-1936.[68]CHOIC,CUIY.Recoveryofsilverfromwastewatercoupledwithpowergenerationusingamicrobialfuelcell[J].BioresourceTechnology,2020,107(2):522-525.[69]HEIJNEAT,LIUF,RVW,etal.Copperrecoverycombinedwithelectricityproductioninamicrobialfuelcell[J].EnvironmentalScienceTechnology,2018,44(11):4376-4381.[70]YOUSJ,ZHANGJN,YUANYX,etal.Developmentofmicrobialfuelcellwithanoxic/oxicdesignfortreatmentofsalineseafoodwastewaterandbiologicalelectricitygeneration[J].JournalofChemicalTechnologyBiotechnology,2018,85(8):1077-1083.[71]刘明,金春姬,孙若晨.盐度对生物阴极微生物燃料电池脱氮除碳及产电性能的影响[J].环保科技,2021,21(4):29-34.LIUM,JINCJ,SUNRC.Effectsofsalinityoncarbonandnitrogenremovalandelectricitygenerationinabiocathodemicrobialfuelcell[J].JournalofEnvironmentalScienceandTechnology,2021,21(4):29-34.[72]WANGX,CHENGSA,ZHANGXY,etal.Impactofsalinityoncathodecatalystperformanceinmicrobialfuelcells(MFCs)[J].InternationalJournalofHydrogenEnergy,2018,36(21):13900-13906.[73]LIUH,CHENGSA,LOGANBE.Powergenerationinfed-batchmicrobialfuelcellsasafunctionofionicstrength,temperature,andreactorconfiguration[J].EnvironmentalScienceTechnology,2005,39(14):5488-5493.[74]MIYAHARAM,KOUZUMAA,WATANABEK.EffectsofNaClconcentrationonanodemicrobesinmicrobialfuelcells[J].AMBExpress,2021,5(1):1-9.[75]LEFEBVREO,TANZ,KHARKWALS,etal.EffectofincreasinganodicNaClconcentrationonmicrobialfuelcellperformance[J].BioresourceTechnology,2020,112:336-340.[76]JANNELLIN,NASTRORA,CIGOLOTTIV,etal.LowpH,highsalinity:toomuchformicrobialfuelcells?[J].AppliedEnergy,2021,192:543-550.[77]KHUDZARIJM,TARTAKOVSKYB,RAGHAVANGSV.EffectofC/Nratioandsalinityonpowergenerationincompostmicrobialfuelcells[J].WasteManagement,2021,48:135-142.[78]AHNY,LOGANBE.Salinecatholytesasalternativestophosphatebuffersinmicrobialfuelcells[J].BioresourceTechnology,2020,132:436-439.[79]KUSHERDJ,KAMERKURAM.Physiologyofhalophiliceubacteria[J].AdvancesinAppliedMicrobiology,1986,10:73-99.[80]WANGJL,ZHANGXM,FENGYC,etal.Effectofsalinityvariationsontheperformanceofactivatedsludgesystem[J].BiomedicalEnvironmentSciences,2005,18(1):5-8.[81]DINCERAR,KARGIF.Saltinhibitionofnitrificationanddenitrificationinsalinewastewater[J].EnvironmentalTechnology,1999,20(11):1147-1153.[82]ROSAMF,ALBUQUERQUERT,FERNANDESJMO,etal.Nitrificationofsalineeffluents[J].BrazilianJournalofChemicalEngineering,1997,14(2):151-158.[83]ROSAMF,FURTADOAAL,ALBUQUERQUERT,etal.Biofilmdevelopmentandammoniaremovalinthenitrificationofasalinewastewater[J].BioresourceTechnology,1998,65(1):135-138.[84]郭姿璇,王群,佘宗莲.盐度对未驯化微生物活性的影响[J].中国环境科学,2021,37(1):181-187.GUOZX,WANGQ,SHEZL.Effectsofsalinityontheactivityofnon-acclimatedbiomass[J].ChinaEnvironmentalScience,2021,37(1):181-187.[85]YOSHIES,OGAWAT,MAKINOH,etal.Characteristicsofbacteriashowinghighdenitrificationactivityinsalinewastewater[J].LettersinAppliedMicrobiology,2006,42(3):277-283.[86]EROGLUV,ALTINBASM,GOMECCY,etal.Problemsrelatingtohighsilt,salinityandammoniainTuzla(Istanb

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论