2023年数字实验报告_第1页
2023年数字实验报告_第2页
2023年数字实验报告_第3页
2023年数字实验报告_第4页
2023年数字实验报告_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数字信号解决实验报告姓名:潘文才学号:08150227班级:0610802地点:YF303时间:第九、十、十一周星期三9-10节实验一:实验名称:时域采样定理一、实验目的:1.学习掌握matlab的编程知识及其matalab在数字信号解决方面常用的12个函数2.熟悉抱负采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。二、实验内容:一、对给定的模拟信号Xa(t)=Ae-atsin(Ω0t)U(t)进行采样!(fm=500)1,用鼠标双击电脑桌面的matlab6.5的快捷图标,运营matlab6.5主程序。2,在matlab命令窗口中输入,如下图示>>n=0:50-1;>>fs=1000;>>string='1000';>>Xa=444.128*exp((-222.144)*n/fs).*sin(222.144*n/fs);>>DFT(Xa,50,string);3,假如输入的命令没有错误会出现如下绘图对话框。从中大家可以再次体会函数DFT(x,N,str)的功能。4,将实验图形导出,保存,选择Export菜单项。5,在导出对话框中选择文献格式为bmp,输入保存的文献名后,点击保存按钮。这时保存的实验结果可以用WINDOWS自带的画图工具打开。6,关闭matlab的绘图对话框,在命令窗口中输入>>clearall;>>closeall;>>clc;后,试将第三步中输入的fs改成500Hz,或1500Hz,画出采样后信号的波图和幅频特性曲线(如下图所示),并按第5步中的方法保存实验图形。二、掌握Matlab基本的编程方法和基本的绘图函数。1,用Matlab打开C:\MATLAB6p5\work\chouyang.m文献,(可按实验内容一,环节11-12的方法),该运营M文献后,绘制出模拟信号X(t)=1.5sin(2.5π)的波形,及其经过采样频率fs=4Hz采样后,信号X(nTs),X(n)的波形。2,运营chouyang.m文献。3,在仔细阅读chouyang.m文献中的内容后,在掌握figure()、subplot()、plot()、title()、stem()函数的基础上编写M文献绘制模拟信号Xa(t)=444.128e-222.144tsin(222.144t)U(t)波形,及其通过采样频率fs=1000Hz采样后,信号Xa(nTs),Xa(n)的波形。三、实验图形:四、思考题:观测实验内容1中,在分别采用500Hz,1000Hz,1500Hz采样后,对所得的到的信号Xa(n)绘制的3个幅频特性曲线有何不同,并分析为什么?结合时域采样定理的内容对图形进行解释;答:在分别采用500Hz,1000Hz,1500Hz采样后,对所得的到的信号Xa(n)绘制的3个幅频特性曲线分析可知:采样频率越大,其傅氏变换所得的图形的幅值变化越锋利。由时域采样定理知,当采样频率fs.max大于信号中,最高频率fmax的2倍时,即:fsmax>=2fmax,则采样之后的数字信号完整地保存了原始信号中的信息所得信号原形越完整地保存了原始信号中的信息,以保证可以从采样信号中无失真的恢复出本来的信号。2,思考如何编写MatlabM文献,eqf(3,4)\*MERGEFORMATeqf()\*MERGEFORMAT完毕从Xa(n)恢复出Xa(t)的功能。假如给定Matlab函数sinc(x)(sinc(x)=sin(πx)/πx),和conv(a,b)函数完毕矢量a,b的卷积。答:答:采样时在满足采样定理条件的情况下fs>=2fm,将Xa(jw)通过一个抱负低通滤波器,运用它滤除高频成分,即可恢复原信号。Ya(jw)=Xa(jw)H(jw),h(t)=ya(t)=xa(t)*h(t)=,有给定的matlab函数sinc(x)及conv(a,b)恢复出xa(t)。实验二:实验名称:时域离散系统及其响应一、实验目的:1.继续熟悉掌握matlab的使用和编程2.熟悉掌握时域离散系统的时域特性。3.验证时域卷积定理。二、实验内容:1.给定系统h1(n)=δ(n)+2.5δ(n−1)+2.5δ(n−2)+δ(n−3),输入信号为x1(n)=δ(n),用matlab画出输入、系统和输出y1(n)在时域和频域的图形(提醒可以调用conv和DFT(x,N,str)函数,每次调用DFT(x,N,str)函数前先调用figure函数)。在matlab中可以对一矢量(矩阵)赋初值,除了像“实验一”中可以用冒号操作符外还可以下面的方法,比如我们定义矢量h1来表达h1(n),可以用h1=[1,2.5,2,5,1];h1的长度可由length函数求得。保存三幅实验结果图形2.给定系统h2(n)=R10(n),输入信号为x2(n)=R10(n),用matlab画出输入、系统和输出y2(n)在时域和频域的图形。保存三张实验结果图形。3.给定系统h3(n)=R10(n)、,输入信号为x3(t)=R5(n),用matlab画出输入、系统和输出y3(n)在时域和频域的图形。并将FT[y3(n)]与X3[exp*(jw)]•H3[exp*(jw)]进行比较,我们先只是比较︱FT[y3(n)]︱与︱X3[exp*(jw)]︱•︱H3[exp*(jw)]︱是否同样,验证时域卷积定理。DFT(x,N,str)函数定义为function[c,l]=DFT(x,N,str),调用DFT函数后返回两个值,c为给定的数字信号x的X3[exp*(jw)]的值,当ω=[−4π,−3.99π,−3.98π,−3.97π…0.02π,-0.01π,0,-0.01π,0.02π,3,97π,3.98π,3.99π,4π],1的值为l=[−4π,−3.99π,−3.98π,−3.97π…0.02π,-0.01π,0,-0.01π,0.02π,3,97π,3.98π,3.99π,4π]试编写M文献完毕环节3,保存如下四张实验结果图形,并保存M文献(在编写文献过程中注意matlab中“*”和“.*”操作符的区别.)三、实验图形:四、思考题:1.比较y1(n)和h1(n)的时域和频域特性,注意它们之间有无差别,用所学理论解释所得结果。判断y2(n)图形及其非零序列长度是否与理论结果一致,说出一种判断y(n)图形对的与否的方法。答:y1和h1的时域和频域特性的波形是一致的。H1是长度为4的有限长序列,而频域采样的点数为9大于4点,所以可以有其主值序列不失真的恢复出原始信号。y2图形及其非零序列长度与理论结果一致。2.matlab的工具箱函数conv,能用于计算两个有限长序列之间的卷积,但conv函数假定这两个序列都从n=0开始。试编写M文献计算x(n)=[3,11,7,0,−1,4,2],−3≤n≤3和h(n)=[2,3,0,−5,2,1],−1≤n≤4之间的卷积,并绘制y(n)的波形图。答:程序:nx=[-3,-2,-1,0,1,2,3];x=[3,11,7,0,-1,4,2];nh=[-1,0,1,2,3,4];h=[2,3,0,-5,2,1];nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h));y=conv(x,h);figure;stem(ny,y,’.’);实验三:实验名称:用FFT进行谱分析一、实验目的1.进一步加深对DFT算法原理和基本性质的理解2.熟悉FFT算法原理和FFT子程序的应用。3.学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解也许出现的分析误差及其因素,以便在实际中对的应用FFT。二.实验原理1.快速傅立叶变换(FFT)算法:长度为N的序列的离散傅立叶变换为N点的DFT可以分解为两个N/2点的DFT,每个N/2点的DFT又可以分解为两个N/4点的DFT。依此类推,当N为2的整数次幂时,由于每分解一次减少一阶幂次,所以通过M次的分解,最后所有成为一系列2点DFT运算。2.运用FFT进行频谱分析:若信号自身是有限长的序列,计算序列的频谱就是直接对序列进行FFT运算求得,就代表了序列在幅度谱和相位谱之间的频谱值。若信号是模拟信号,用FFT进行谱分析时,一方面必须对信号进行采样,使之变成离散信号,然后就可按照前面的方法用FFT来对连续信号进行谱分析。三、实验环节1.复习DFT的定义、性质和用DFT作谱分析的有关内容。2.复习FFT算法原理与编程思想,并对照DIT-FFT运算流图和程序框图,读懂本实验提供的FFT子程序。3.编制信号产生子程序,产生以下典型信号供谱分析用:x1(n)=R4(n)(1-1)x2(n)=[1,2,3,4,4,3,2,1](1-2)x3(n)=[4,3,2,1,1,2,3,4](1-3)x4(n)=cos(π/4*n)(1-4)x5(n)=sin(π/8*n)(1-5)x6(t)=cos(8πt)+cos(16πt)+cos(20πt)(1-6)4.编写M文献。5.按实验内容规定,上机实验,并写出实验报告。四、实验内容重要使用的MATLAB函数:函数fft(x)可以计算R点序列的R点DFT值;而fft(x,N)则计算R点序列的N点DFT,若R>N,则直接截取R点DFT的前N点,若R<N,则x先进行补零扩展为N点序列再求N点DFT。1、编写matlabM文献对信号x1(n)做8点和16点的FFT,保存实验结果图形。2、编写matlabM文献对信号x2(n)做8点和16点的FFT,保存实验结果图形。3、编写matlabM文献对信号x4(n)做8点和16点的FFT,保存实验结果图形。4、编写matlabM文献对信号x6(t)以fs=64(Hz)采样后做N=16、32、64点的FFT,保存三幅实验结果图形。五、结果图形六、思考题1.在N=8和N=16两种情况下,x2(n)、x3(n)的幅频特性会相同吗?为什么?答:N=8时x2(n)、x3(n)的幅频特性是相同的,而N=16时x2(n)、x3(n)的幅频特性是不相同的。由于在N=8的情况下,x3(n)相称于是x2(n)的一个时延,而N=16时x2(n)通过时延得到的是x2(n)=[4,3,2,1,0,0,0,0,0,0,0,0,1,2,3,4]而x3(n)=[4,3,2,1,2,3,4,0,0,0,0,0,0,0]所以此时x2(n)、x3(n)的幅频特性不相同。2.假如周期信号的周期预先不知道,如何用FFT进行分析?答:设一个定长的m值,先取2m,看2m与m的误差是否大,如大的话再取4m,看4m与2m的误差是否大,如不大,4倍的m值则可近似本来点的谱分析。3.试使用函数fft(x)近似画出x(n)=R10(n)在(−4π,4π)上的幅频响应曲线(|FT[(X(n)]|)。答:clc;ﻫcloseall;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论