广东省河源市三河中学高三数学文上学期期末试题含解析_第1页
广东省河源市三河中学高三数学文上学期期末试题含解析_第2页
广东省河源市三河中学高三数学文上学期期末试题含解析_第3页
广东省河源市三河中学高三数学文上学期期末试题含解析_第4页
广东省河源市三河中学高三数学文上学期期末试题含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省河源市三河中学高三数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知f(x)是定义在R上的奇函数,且周期为2,当x∈(0,1]时,f(x)=1﹣x,则函数f(x)在[0,2017]上的零点个数是()A.1008 B.1009 C.2017 D.2018参考答案:B【考点】函数零点的判定定理.【分析】根据函数零点存在定理和函数的奇偶性和周期性即可求出答案.【解答】解:当f(x)=0时,x=1,此时有一个零点,∵f(x)周期为2,∴f(x+2)=f(x),∴x=3,5,7,9…均是函数的零点,∵x∈[0,2017],∴零点的个数为=1009,故选:B.2.设B、C是定点,且均不在平面α上,动点A在平面α上,且sin∠ABC=,则点A的轨迹为()A.圆或椭圆 B.抛物线或双曲线C.椭圆或双曲线 D.以上均有可能参考答案:D【考点】轨迹方程.【专题】圆锥曲线的定义、性质与方程.【分析】以BC为轴线,B为顶点作圆锥面,使圆锥面的顶角为60°,则圆锥面上的任意一点与B连线,都能满足∠ABC=30°,用平面α截圆锥所得的交线即为点A的轨迹.【解答】解:以BC为轴线,B为顶点,顶角是60°(半顶角是30°),则A就是这个锥面与平面α的交线.如果平面α只与圆锥面一面相交,如图(1),

(1)那么A的轨迹是圆或椭圆或抛物线;如果A与圆锥面两侧都相交(圆锥面两侧指以B为顶点向上的圆锥和向下的圆锥,就像沙漏的形状),如图(2),则轨迹是双曲线.∴点A的轨迹为圆或椭圆或抛物线或双曲线.故选:D.【点评】本题考查轨迹方程,考查学生的空间想象能力和思维能力,正确作出图形是解答此题的关键,是中档题.3.已知,则

)A.

B.

C.

D.参考答案:B4.曲线关于直线对称的曲线方程是(

)A.

B.

C.

D.参考答案:C5.已知数列{an}是等差数列,其前n项和Sn有最大值,且<﹣1,则使得Sn>0的n的最大值为()A.2016 B.2017 C.4031 D.4033参考答案:C【考点】85:等差数列的前n项和.【分析】利用等差数列的通项公式求和公式及其性质即可判断出结论.【解答】解:由题意知d<0,a2016>0,a2016+a2017<0,因此S4031>0,S4032<0.故选:C.6.一个算法的程序框图如右,则其输出结果是A.0

B.

C.

D.参考答案:C7.已知S=(x﹣a)2+(lnx﹣a)2(a∈R),则S的最小值为()A. B. C. D.2参考答案:B【考点】函数的最值及其几何意义.【分析】由题意可得S的几何意义为两点(x.lnx),(a,a)的距离的平方,求得与直线y=x平行且与曲线y=lnx相切的切点的坐标,运用点到直线的距离公式计算即可得到所求最小值.【解答】解:S=(x﹣a)2+(lnx﹣a)2(a∈R)的几何意义为:两点(x.lnx),(a,a)的距离的平方,由y=lnx的导数为y′=,点(a,a)在直线y=x上,令=1,可得x=1,即有与直线y=x平行的直线且与曲线y=lnx相切的切点为(1,0),由点到直线的距离可得d==,即有S的最小值为()2=,故选:B.8.已知函数,正实数m,n满足,且,若在区间上的最大值为2,则

A.

B.

C.

D.参考答案:A

9.等差数列的前n项和为,且9,3,成等比数列.若=3,则=

(

)

A.6

B.4

C.3

D.

5参考答案:C10.运行如图所示的程序框图,当输入x的值为5时,输出y的值恰好是,则处的关系式可以是()A.y=x3 B.y=x C.y=5﹣x D.y=5x参考答案:D【考点】EF:程序框图.【分析】由题意,执行程序框图,写出得到的x的值,然后逐一检验4个选项的关系式即可.【解答】解:由题意,执行程序框图,有x=5不满足条件x≤0,有x=x﹣2=3不满足条件x≤0,有x=x﹣2=1不满足条件x≤0,有x=x﹣2=﹣1满足条件x≤0,此时经相应关系式计算得y=,检验4个选项,有A,y=(﹣1)3=﹣1≠,不正确.B,y=(﹣1)=﹣1≠,不正确.C,y=5﹣(﹣1)=5≠,不正确.D,y=5﹣1=,正确.故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.已知角,且,则=

.参考答案:12.某个部件由三个元件如图4方式连接而成,元件A或元件B正常工作,且元件C正常工作,则部件正常工作.若3个元件的次品率均为,且各个元件相互独立,那么该部件的次品率为

参考答案:略13.对于函数,现给出四个命题:ks5u①时,为奇函数②的图象关于对称③时,方程有且只有一个实数根④方程至多有两个实数根其中正确命题的序号为

.参考答案:①②③若,则,为奇函数,所以①正确。由①知,当时,为奇函数图象关于原点对称,的图象由函数向上或向下平移个单位,所以图象关于对称,所以②正确。当时,,当,得,只有一解,所以③正确。取,,由,可得有三个实根,所以④不正确,综上正确命题的序号为①②③。14.已知双曲线C1与双曲线的渐近线相同,且双曲线C1的焦距为8,则双曲线C1的方程为_______________.参考答案:或【分析】设双曲线的方程为,根据焦距计算得到答案.【详解】设双曲线的方程为,故,则或,解得或,故双曲线的方程为或.故答案:或.【点睛】本题考查了双曲线方程,设方程为是解题的关键.15.在中,内角的对边分别是,若,,则

参考答案:16.已知函数f(x)满足f(x)=f(),当x∈[1,3]时,f(x)=lnx,若在区间[,3]内,函数g(x)=f(x)-ax与x轴有三个不同的交点,则实数a的取值范围是

.参考答案:17.由曲线y=2x2,直线y=﹣4x﹣2,直线x=1围成的封闭图形的面积为.参考答案:【考点】定积分在求面积中的应用.【专题】计算题.【分析】先联立两个曲线的方程,求出交点,以确定积分公式中x的取值范围,最后根据定积分的几何意义表示出区域的面积,根据定积分公式解之即可.【解答】解:由方程组解得,x=﹣1,y=2故A(﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x2)dx﹣∫﹣11(﹣4x﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望.参考答案:(1)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量为1件”)=+=.(2)由题意知,X的可能取值为2,3.P(X=2)=P(“当天商品销售量为1件”)==;P(X=3)=P(“当天商品销售量为0件”)+P(“当天商品的销售量为2件”)+P(“当天商品销售量为3件”)=++=.故X的分布列为X的数的期望为EX=2×+3×=.19.已知函数f(x)=|x+2|﹣|x﹣2|+m(m∈R).(Ⅰ)若m=1,求不等式f(x)≥0的解集;(Ⅱ)若方程f(x)=x有三个实根,求实数m的取值范围.参考答案:【考点】R5:绝对值不等式的解法;R4:绝对值三角不等式.【分析】(Ⅰ)分x≤﹣2,﹣2<x<2,x≥2三种情况求解;(Ⅱ)由方程f(x)=x可变形为m=x+|x﹣2|﹣|x+2|.令作出图象如图所示.根据图象求解.【解答】解:(Ⅰ)∵m=1时,f(x)=|x+2|﹣|x﹣2|+1.∴当x≤﹣2时,f(x)=﹣3,不可能非负;当﹣2<x<2时,f(x)=2x+1,由f(x)≥0可解得,于是;当x≥2时,f(x)=5>0恒成立.所以不等式f(x)≥0的解集为.(Ⅱ)由方程f(x)=x可变形为m=x+|x﹣2|﹣|x+2|.令作出图象如图所示.于是由题意可得﹣2<m<2.20.设二次方程anx2﹣an+1x+1=0(n∈N*)有两根α、β,且满足6α﹣2αβ+6β=3.(1)试用an表示an+1;(2)求证:{an﹣}是等比数列;(3)若a1=,求数列{an}的通项公式.参考答案:【考点】数列递推式;一元二次方程的根的分布与系数的关系;等比关系的确定.【分析】(1)直接利用韦达定理求出两根之和以及两根之积,再代入6α﹣2αβ+6β=3整理即可得.(2)对(1)的结论两边同时减去整理即可证:数列{}是等比数列;(3)先利用(2)求出数列{}的通项公式,即可求数列{an}的通项公式.【解答】解:(1)由韦达定理得:,,由6α﹣2αβ+6β=3得6﹣=3,故.(2)证明:因为=an﹣=(),所以,故数列{}是公比为的等比数列;(3)当时,数列{}的首项,故==,于是.an=.21.(本小题12分)随机抽取某中学甲乙两个班级各10名同学,测量他们的身高(单位:cm),获得的数据如下:甲:182

170

171

179

179

162

163

168

168

158乙:181

170

173

176

178

179

162

165

168

159(1)根据上述的数据作出茎叶图表示;(2)判断哪个班级的平均身高较高,并求出甲班的方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,身高176cm的同学被抽中的概率是多少?参考答案:(2)乙班平均身高高;(3)22.已知正项数列{an}的前n项和为Sn,满足.(1)求数列{an}的通项公式;(2)已知对于,不等式恒成立,求实数M的最小值;参考答案:(1);(2).【分析】(1)利用可得关于的递推关系,整理得到,从而为等差数列,利用公式可求其通项.(2)利用等差数列的前项和的公式得到,故,利用裂项相消法可求的前项和后可求其该和的范围为,从而可求的最小值.【详解】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论