福建省厦门市逸夫中学2022-2023学年九年级数学第一学期期末达标测试试题含解析_第1页
福建省厦门市逸夫中学2022-2023学年九年级数学第一学期期末达标测试试题含解析_第2页
福建省厦门市逸夫中学2022-2023学年九年级数学第一学期期末达标测试试题含解析_第3页
福建省厦门市逸夫中学2022-2023学年九年级数学第一学期期末达标测试试题含解析_第4页
福建省厦门市逸夫中学2022-2023学年九年级数学第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知AB是ʘO的直径,点P在B的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C.若⊙O的半径为1.BC=9,则PA的长为()A.8 B.4 C.1 D.52.某学校组织创城知识竞赛,共设有20道试题,其中有:社会主义核心价值观试题3道,文明校园创建标准试题6道,文明礼貌试题11道.学生小宇从中任选一道试题作答,他选中文明校园创建标准试题的概率是()A. B. C. D.3.如图,已知点在反比例函数上,轴,垂足为点,且的面积为,则的值为()A. B. C. D.4.二次函数y=ax2+bx+c的图象如图所示,若点A(-2.2,y1),B(-3.2,y2)是图象上的两点,则y1与y2的大小关系是().A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定5.服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是()A.平均数 B.中位数 C.方差 D.众数6.用相同的小立方块搭成的几何体的三种视图都相同(如图所示),则搭成该几何体的小立方块个数是()A.3个 B.4个 C.5个 D.6个7.下列一元二次方程中,有两个不相等的实数根的方程是()A. B. C. D.8.如图,在中,,,则的值是()A. B.1 C. D.9.学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为()A. B. C. D.10.如图,在正方形中,点为边的中点,点在上,,过点作交于点.下列结论:①;②;③;④.正确的是(

).A.①② B.①③ C.①③④ D.③④二、填空题(每小题3分,共24分)11.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度(米)关于水珠与喷头的水平距离(米)的函数解析式是.水珠可以达到的最大高度是________(米).12.如图,C,D是抛物线y=(x+1)2﹣5上两点,抛物线的顶点为E,CD∥x轴,四边形ABCD为正方形,AB边经过点E,则正方形ABCD的边长为_____.13.设、是一元二次方程的两实数根,则的值为_________14.若点与点关于原点对称,则______.15.分解因式:x3﹣16x=______.16.如果二次根式有意义,那么的取值范围是_________.17.如果点A(2,﹣4)与点B(6,﹣4)在抛物线y=ax2+bx+c(a≠0)上,那么该抛物线的对称轴为直线_____.18.小刚要测量一旗杆的高度,他发现旗杆的影子恰好落在一栋楼上,如图,此时测得地面上的影长为8米,楼面上的影长为2米.同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则旗杆的高度为_______米.三、解答题(共66分)19.(10分)如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm.点P从点A出发,沿AB边以2cm/s的速度向点B匀速移动;点Q从点B出发,沿BC边以1cm/s的速度向点C匀速移动,当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t(s).(1)当PQ∥AC时,求t的值;(2)当t为何值时,△PBQ的面积等于cm2.20.(6分)如图,⊙O的半径为,A、B为⊙O上两点,C为⊙O内一点,AC⊥BC,AC=,BC=.(1)判断点O、C、B的位置关系;(2)求图中阴影部分的面积.21.(6分)如图,是直径AB所对的半圆弧,点P是与直径AB所围成图形的外部的一个定点,AB=8cm,点C是上一动点,连接PC交AB于点D.小明根据学习函数的经验,对线段AD,CD,PD,进行了研究,设A,D两点间的距离为xcm,C,D两点间的距离为cm,P,D两点之间的距离为cm.小明根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(2)按照下表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值:x/cm0.002.002.003.003.204.005.006.006.502.008.00/cm0.002.042.093.223.304.004.423.462.502.530.00/cm6.245.294.353.463.302.642.00m2.802.002.65补充表格;(说明:补全表格时,相关数值保留两位小数)(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,并画出函数的图象:(3)结合函数图象解决问题:当AD=2PD时,AD的长度约为___________.22.(8分)阅读下列材料,然后解答问题.经过正四边形(即正方形)各顶点的圆叫做这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫做这个圆的内接正四边形.如图,正方形ABCD内接于⊙O,⊙O的面积为S1,正方形ABCD的面积为S1.以圆心O为顶点作∠MON,使∠MON=90°.将∠MON绕点O旋转,OM、ON分别与⊙O交于点E、F,分别与正方形ABCD的边交于点G、H.设由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积为S.(1)当OM经过点A时(如图①),则S、S1、S1之间的关系为:(用含S1、S1的代数式表示);(1)当OM⊥AB于G时(如图②),则(1)中的结论仍然成立吗?请说明理由;(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论任然成立吗:请说明理由.23.(8分)如图,AB是⊙O的直径,,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.24.(8分)如图,直线y=﹣x+m与抛物线y=ax2+bx都经过点A(6,0),点B,过B作BH垂直x轴于H,OA=3OH.直线OC与抛物线AB段交于点C.(1)求抛物线的解析式;(2)当点C的纵坐标是时,求直线OC与直线AB的交点D的坐标;(3)在(2)的条件下将△OBH沿BA方向平移到△MPN,顶点P始终在线段AB上,求△MPN与△OAC公共部分面积的最大值.25.(10分)端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.26.(10分)计算:(1);(2).

参考答案一、选择题(每小题3分,共30分)1、C【分析】连接OD,利用切线的性质可得∠PDO=90°,再判定△PDO∽△PCB,最后再利用相似三角形的性质列方程解答即可.【详解】解:连接DO∵PD与⊙O相切于点D,∴∠PDO=90°,∵BC⊥PC,∴∠C=90°,∴∠PDO=∠C,∴DO//BC,∴△PDO∽△PCB,∴,设PA=x,则,解得:x=1,∴PA=1.故答案为C.【点睛】本题考查了圆的切线性质以及相似三角形的判定与性质,证得△PDO∽△PCB是解答本题的关键.2、B【分析】根据概率公式即可得出答案.【详解】解:∵共设有20道试题,其中文明校园创建标准试题6道,∴他选中文明校园创建标准的概率是,故选:B.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、C【分析】根据反比例函数中的比例系数k的几何意义即可得出答案.【详解】∵点在反比例函数,的面积为故选:C.【点睛】本题主要考查反比例函数中的比例系数k的几何意义,掌握反比例函数中的比例系数k的几何意义是解题的关键.4、A【分析】根据抛物线的对称性质进行解答.【详解】因为抛物线y=ax2+bx+c的对称轴是x=−3,点A(-2.2,y1),B(-3.2,y2),所以点B与对称轴的距离小于点A到对称轴的距离,所以y1<y2故选:A.【点睛】考查了二次函数的性质,二次函数图象上点的坐标特征.解题时,利用了二次函数图象的对称性.5、D【分析】根据题意,应该关注哪种尺码销量最多.【详解】由于众数是数据中出现次数最多的数,故应该关注这组数据中的众数.故选D【点睛】本题考查了数据的选择,根据题意分析,即可完成。属于基础题.6、B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】依题意可得所以需要4块;故选:B【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.7、D【分析】根据根的判别式△=b2-4ac的值的符号,可以判定个方程实数根的情况,注意排除法在解选择题中的应用.【详解】解:A.∵△=b2-4ac=1-4×1×1=-3<0,

∴此方程没有实数根,故本选项错误;

B.变形为

∴此方程有没有实数根,故本选项错误;C.∵△=b2-4ac=22-4×1×1=0,

∴此方程有两个相等的实数根,故本选项错误;

D.∵△=b2-4ac=42-4×1×1=12,

∴此方程有两个不相等的实数根,故本选项正确.

故选:D.【点睛】此题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8、A【分析】利用相似三角形的性质:相似三角形的面积比等于相似比的平方得到,即可解决问题.【详解】∵,∴,∴,∴,故选:A.【点睛】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9、C【解析】分析:根据题意得△AOB∽△COD,根据相似三角形的性质可求出CD的长.详解:∵,,∴∠ABO=∠CDO,∵∠AOB=∠COD,∴△AOB∽△COD,∴∵AO=4m,AB=1.6m,CO=1m,∴.故选C.点睛:本题考查了相似三角形的判定与性质,正确得出△AOB∽△COD是解题关键.10、C【分析】连接.根据“HL”可证≌,利用全等三角形的对应边相等,可得,据此判断①;根据“”可证≌,可得,从而可得,据此判断②;由(2)知,可证,据此判断③;根据两角分别相等的两个三角形相似,可证∽∽,可得,从而可得,据此判断④.【详解】解:(1)连接.如图所示:

∵四边形ABCD是正方形,

∴∠ADC=90°,

∵FG⊥FC,

∴∠GFC=90°,

在Rt△CFG与Rt△CDG中,∴≌.∴...①正确.(2)由(1),垂直平分.∴∠EDC+∠2=90°,

∵∠1+∠EDC=90°,∴.∵四边形ABCD是正方形,

∴AD=DC=AB,∠DAE=∠CDG=90°,∴≌.∴.∵为边的中点,∴为边的中点.∴.∴②错误.(3)由(2),得.∴.③正确.(4)由(3),可得∽∽.∴∴.∴④正确.故答案为:C.【点睛】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的判定与性质、三角形中位线定理、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.二、填空题(每小题3分,共24分)11、10【解析】将一般式转化为顶点式,依据自变量的变化范围求解即可.【详解】解:,当x=2时,y有最大值10,故答案为:10.【点睛】利用配方法将一般式转化为顶点式,再利用顶点式去求解函数的最大值.12、【分析】首先设AB=CD=AD=BC=a,再根据抛物线解析式可得E点坐标,表示出C点横坐标和纵坐标,进而可得方程﹣5﹣a=﹣5,再解即可.【详解】设AB=CD=AD=BC=a,∵抛物线y=(x+1)2﹣5,∴顶点E(﹣1,﹣5),对称轴为直线x=﹣1,∴C的横坐标为﹣1,D的横坐标为﹣1﹣,∵点C在抛物线y=(x+1)2﹣5上,∴C点纵坐标为(﹣1+1)2﹣5=﹣5,∵E点坐标为(﹣1,﹣5),∴B点纵坐标为﹣5,∵BC=a,∴﹣5﹣a=﹣5,解得:a1=,a2=0(不合题意,舍去),故答案为:.【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知二次函数的图像与性质、正方形的性质.13、27【详解】解:根据一元二次方程根与系数的关系,可知+=5,·=-1,因此可知=-2=25+2=27.故答案为27.【点睛】此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:,,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.14、1【解析】∵点P(m,﹣2)与点Q(3,n)关于原点对称,∴m=﹣3,n=2,则(m+n)2018=(﹣3+2)2018=1,故答案为1.15、x(x+4)(x–4).【解析】先提取x,再把x2和16=42分别写成完全平方的形式,再利用平方差公式进行因式分解即可.解:原式=x(x2﹣16)=x(x+4)(x﹣4),故答案为x(x+4)(x﹣4).16、x≤1【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:二次根式有意义,则1-x≥0,

解得:x≤1.

故答案为:x≤1.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.17、x=4【解析】根据函数值相等的点到抛物线对称轴的距离相等,可由点A(1,-4)和点B(6,-4)都在抛物线y=ax²+bx+c的图象上,得到其对称轴为x==1.故答案为x=4.18、1【分析】直接利用已知构造三角形,利用同一时刻,实际物体与影长成比例进而得出答案.【详解】如图所示:由题意可得,DE=2米,BE=CD=8米,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴,解得:AB=4,故旗杆的高度AC为1米.故答案为:1.【点睛】此题主要考查了相似三角形的应用,正确构造三角形是解题关键.三、解答题(共66分)19、(1)t=;(2)当t为2s或3s时,△PBQ的面积等于cm2.【分析】(1)根据PQ∥AC得到△PBQ∽△ABC,列出比例式即可求解;(2)解法一:过点Q作QE⊥AB于E,利用△BQE∽△BCA,得到,得到QE=t,根据S△PBQ=BP·QE=列出方程即可求解;解法二:过点P作PE⊥BC于E,则PE∥AC,得到△BPE∽△BAC,则,求出PE=(10-2t).,利用S△PBQ=BQ·PE=列出方程即可求解.【详解】(1)由题意得,BQ=tcm,AP=2cm,则BP=(10—2t)cm在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm∵PQ∥AC,∴△PBQ∽△ABC,∴,即,解得t=.(2)解法一:如图3,过点Q作QE⊥AB于E,则∠QEB=∠C=90°.∵∠B=∠B,∴△BQE∽△BCA,∴,即,解得QE=t.∴S△PBQ=BP·QE=,即·(10-2t)·t=.整理,得t2-5t+6=0.解这个方程,得t1=2,t2=3.∵0<t<5,∴当t为2s或3s时,△PBQ的面积等于cm2.解法二:过点P作PE⊥BC于E,则PE∥AC(如图4).∵PE∥AC.∴△BPE∽△BAC,∴,即,解得PE=(10-2t).∴S△PBQ=BQ·PE=,即·t·(10-2t)=整理,得t2-5t+6=0.解这个方程,得t1=2,t2=3.∵0<t<5,∴当t为2s或3s时,△PBQ的面积等于cm2.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理、适当构造辅助线进行求解.20、(1)O、C、B三点在一条直线上,见解析;(2)【分析】(1)连接OA、OB、OC,证明∠ABC=∠ABO=60°,从而证得O、C、B三点在一条直线上;(2)利用扇形面积与三角形面积的差即可求得答案.【详解】(1)答:O、C、B三点在一条直线上.证明如下:连接OA、OB、OC,在中,,∵∴∠ABC=60°,在中,∵OA=OB=AB,∴△OAB是等边三角形,∴∠ABO=60°,故点C在线段OB上,即O、C、B三点在一条直线上.(2)如图,由(1)得:△OAB是等边三角形,∴∠O=60°,∴.【点睛】本题考查了扇形面积公式与三角形面积公式,勾股定理、特殊角的三角函数值,利用证明∠ABC=∠ABO=60°,证得O、C、B三点在一条直线上是解题的关键.21、(2)m=2.23;(2)见解析;(3)4.3【分析】(2)根据表格中的数据可得:当x=5或2时,y2=2.00,然后画出图形如图,可得当与时,,过点P作PM⊥AB于M,然后根据等腰三角形的性质和勾股定理求出PM的长即得m的值;(2)用光滑的曲线依次连接各点即可;(3)由题意AD=2PD可得x=2y2,只要在函数y2的图象上寻找横坐标是纵坐标的2倍的点即可,然后结合图象解答即可.【详解】解:(2)由表格可知:当x=5或2时,y2=2.00,如图,即当时,,时,,∴,过点P作PM⊥AB于M,则,则在Rt△中,,即当x=6时,m=2.23;(2)如图:(3)由题意得:AD=2PD,即x=2y2,即在函数y2的图象上寻找横坐标是纵坐标的2倍的点即可,如图,点Q的位置即为所求,此时,x≈4.3,即AD≈4.3.故答案为:4.3.【点睛】本题主要考查了函数图象的规律、等腰三角形的性质、勾股定理和圆的有关知识,正确理解题意、把握题中的规律、熟练运用数形结合的思想方法是解题关键.22、(1);(1)(1)中的结论仍然成立,理由见解析;(1)(1)中的结论仍然成立,理由见解析.【解析】试题分析:(1)结合正方形的性质及等腰直角三角形的性质,容易得出结论;(1)仍然成立,可证得四边形OGHB为正方形,则可求出阴影部分的面积为扇形OEF的面积减去正方形OGBH的面积;(3)仍然成立,过O作OR⊥AB,OS⊥BC,垂足分别为R、S,则可证明△ORG≌△OSH,可得出四边形ORBS的面积=四边形OGBH的面积,再利用扇形OEF的面积减正方形ORBS的面积即可得出结论.试题解析:(1)当OM经过点A时由正方形的性质可知:∠MON=90°,∴S△OAB=S正方形ABCD=S1,S扇形OEF=S圆O=S1,∴S=S扇形OEF-S△OAB=S圆O-S正方形ABCD=S1-S1=(S1-S1),(1)结论仍然成立,理由如下:∵∠EOF=90°,∴S扇形OEF=S圆O=S1∵∠OGB=∠EOF=∠ABC=90°,∴四边形OGBH为矩形,∵OM⊥AB,∴BG=AB=BC=BH,∴四边形OGBH为正方形,∴S四边形OGBH=BG1=(AB)1=S1,∴S=S扇形OEF-S四边形OGBH=S1-S1=(S1-S1);(3)(1)中的结论仍然成立,理由如下:∵∠EOF=90°,∴S扇形OEF=S圆O=,过O作OR⊥AB,OS⊥BC,垂足分别为R、S,由(1)可知四边形ORBS为正方形,∴OR=OS,∵∠ROS=90°,∠MON=90°,∴∠ROG=∠SOH=90°-∠GOS,在△ROG和△SOH中,,∴△ROG≌△SOH(ASA),∴S△ORG=S△OSH,∴S四边形OGBH=S正方形ORBS,由(1)可知S正方形ORBS=S1,∴S四边形OGBH=S1,∴S=S扇形OEF-S四边形OGBH=(S1-S1).考点:圆的综合题.23、(1)证明见解析;(2)BD=.【分析】(1)连接OC,由已知可得∠BOC=90°,根据SAS证明△OCE≌△BFE,根据全等三角形的对应角相等可得∠OBF=∠COE=90°,继而可证明直线BF是⊙O的切线;(2)由(1)的全等可知BF=OC=2,利用勾股定理求出AF的长,然后由S△ABF=,即可求出BD=.【详解】解:(1)连接OC,∵AB是⊙O的直径,,∴∠BOC=90°,∵E是OB的中点,∴OE=BE,在△OCE和△BFE中,,∴△OCE≌△BFE(SAS),∴∠OBF=∠COE=90°,∴直线BF是⊙O的切线;(2)∵OB=OC=2,由(1)得:△OCE≌△BFE,∴BF=OC=2,∴AF=,∴S△ABF=,即4×2=2BD,∴BD=.【点睛】本题考查了切线的判定、全等三角形的判定与性质、勾股定理、三角形面积的不同表示方法,熟练掌握相关的性质与定理是解题的关键.24、(1)y=-x2+3x;(2)(4,2);(3)【分析】(1)先求出直线AB的解析式,求出点B坐标,再将A,B的坐标代入y=ax2+bx即可;(2)求出直线AC的解析式,再联立直线OC与直线AB的解析式即可;(3)设PM与OC、PA分别交于G、H,PN与OC、OA分别交于K、F,分别求出直线OB,PM,OC的解析式,再分别用含a的代数式表示出H,G,E,F的坐标,最后分情况讨论,可求出△MPN与△OAC公共部分面积的最大值.【详解】解:(1)∵直线y=﹣x+m点A(6,0),∴﹣6+m=0,∴m=6,∴yAB=﹣x+6,∵OA=3OH,∴OH=2,在yAB=﹣x+6中,当x=2时,y=4,∴B(2,4),将A(6,0),B(2,4)代入y=ax2+bx,得,,解得,a=﹣,b=3,∴抛物线的解析式为y=-x2+3x;(2)∵直线OC与抛物线AB段交于点C,且点C的纵坐标是,∴=﹣x2+3x,解得,x1=1(舍去),x2=5,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论