版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k< B.k<﹣ C.k<3 D.k>﹣32.在正方形、矩形、菱形、平行四边形中,其中是中心对称图形的个数为()A. B. C. D.3.下列说法正确的是()A.经过三点可以做一个圆 B.平分弦的直径垂直于这条弦C.等弧所对的圆心角相等 D.三角形的外心到三边的距离相等4.如图,两条直线被三条平行线所截,若,则()A. B. C. D.5.如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是()A. B.C. D.6.如图,⊙O的半径OA等于5,半径OC与弦AB垂直,垂足为D,若OD=3,则弦AB的长为()A.10 B.8 C.6 D.47.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A.60° B.75° C.85° D.90°8.在平面直角坐标系中,正方形,,,,,按如图所示的方式放置,其中点在轴上,点,,,,,,…在轴上,已知正方形的边长为1,,,…,则正方形的边长是()A. B. C. D.9.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A.3m B.m C.m D.4m10.下列图形中,是中心对称图形,但不是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=__.12.方程x2﹣9x=0的根是_____.13.如图,,,与交于点,则是相似三角形共有__________对.14.计算:_____.15.某商品连续两次降低10%后的价格为a元,则该商品的原价为______.16.已知关于x的一元二次方程(m+1)x2+4x+m2+m=0的一个根为0,则m的值是_________.17.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.18.小莉身高,在阳光下的影子长为,在同一时刻站在阳光下,小林的影长比小莉长,则小林的身高为_________.三、解答题(共66分)19.(10分)某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y(件)与单价x(元/件)之间存在一次函数关系y=﹣2x+800(200<x<400).(1)要使新产品日销售利润达到15000元,则新产品的单价应定为多少元?(2)为使公司日销售获得最大利润,该产品的单价应定为多少元?20.(6分)如图,在平面直角坐标系中,ΔABC的三个顶点坐标分别为A(-2,1)、B(-1,4)、C(-3,2).(1)画图:以原点为位似中心,位似比为1:2,在第二象限作出ΔABC的放大后的图形(2)填空:点C1的坐标为,=.21.(6分)如图,于,以直径作,交于点恰有,连接.(1)如图1,求证:;(2)如图2,连接分别交,于点连接试探究与之间的数量关系,并说明理由;(3)在(2)的基础上,若,求的长.22.(8分)定义:点P在△ABC的边上,且与△ABC的顶点不重合.若满足△PAB、△PBC、△PAC至少有一个三角形与△ABC相似(但不全等),则称点P为△ABC的自相似点.如图①,已知点A、B、C的坐标分别为(1,0)、(3,0)、(0,1).(1)若点P的坐标为(2,0),求证点P是△ABC的自相似点;(2)求除点(2,0)外△ABC所有自相似点的坐标;(3)如图②,过点B作DB⊥BC交直线AC于点D,在直线AC上是否存在点G,使△GBD与△GBC有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.23.(8分)(1)解方程:.(2)计算:.24.(8分)如图,双曲线与直线相交于点(点在第一象限),其横坐标为2.(1)求的值;(2)若两个图像在第三象限的交点为,则点的坐标为;(3)点为此反比例函数图像上一点,其纵坐标为3,过点作,交轴于点,直接写出线段的长.25.(10分)总书记指出,到2020年全面建成小康社会,实现第一个百年奋斗目标.为贯彻的指示,实现精准脱贫,某区相关部门指导对口帮扶地区的村民,加工包装当地特色农产品进行销售,以增加村民收入.已知该特色农产品每件成本10元,日销售量(袋)与每袋的售价(元)之间关系如下表:每袋的售价(元)…2030…日销售量(袋)…2010…如果日销售量y(袋)是每袋的售价x(元)的一次函数,请回答下列问题:(1)求日销售量y(袋)与每袋的售价x(元)之间的函数表达式;(2)求日销售利润(元)与每袋的售价(元)之间的函数表达式;(3)当每袋特色农产品以多少元出售时,才能使每日所获得的利润最大?最大利润是多少元?(提示:每袋的利润=每袋的售价每袋的成本)26.(10分)如图,要利用一面足够长的墙为一边,其余三边用总长的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽米的门,能够建生态园的场地垂直于墙的一边长不超过米(围栏宽忽略不计).每个生态园的面积为平方米,求每个生态园的边长;每个生态园的面积_(填“能”或“不能”)达到平方米.(直接填答案)
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】解:∵关于x的方程x2﹣2x+3k=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×3k>0,解得:k<.故选A.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.2、D【解析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可直接选出答案.【详解】在正方形、矩形、菱形、平行四边形中,其中都是中心对称图形,故共有个中心对称图形.故选D.【点睛】本题考查了中心对称图形,正确掌握中心对称图形的性质是解题的关键.3、C【解析】根据确定圆的条件、垂径定理的推论、圆心角、弧、弦的关系、三角形的外心的知识进行判断即可.【详解】解:A、经过不在同一直线上的三点可以作一个圆,A错误;B、平分弦(不是直径)的直径垂直于这条弦,B错误;C、等弧所对的圆心角相等,C正确;D、三角形的外心到各顶点的距离相等,D错误;故选:C.【点睛】本题考查的是圆心角、弧、弦的关系、确定圆的条件、垂径定理的推论和三角形外心的知识,掌握相关定理并灵活运用是解题的关键.4、D【解析】先根据平行线分线段成比例定理求出DF的长,然后可求出BF的长.【详解】,,即,解得,,,故选:.【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.5、B【分析】求出,,y=EF−EM−NF=2−BFtan∠DBC−AEtan∠DAH,即可求解.【详解】解:,y=EF﹣EM﹣NF=2﹣BFtan∠DBC﹣AEtan∠DAH=2﹣x×﹣x()=x2﹣x+2,故选:B.【点睛】本题考查的是动点图象问题,涉及到二次函数,此类问题关键是确定函数的表达式,进而求解.6、B【解析】试题分析:由OC与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,由OA与OD的长,利用勾股定理求出AD的长,由AB=2AD即可求出AB的长.∵OC⊥AB,∴D为AB的中点,即AD=BD=0.5AB,在Rt△AOD中,OA=5,OD=3,根据勾股定理得:AD=4则AB=2AD=1.故选B.考点:垂径定理点评:此题考查了垂径定理,以及勾股定理,熟练掌握垂径定理是解本题的关键7、C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点:旋转的性质.8、D【分析】利用正方形的性质结合锐角三角函数关系得出正方形边长,进而即可找到规律得出答案.【详解】∵正方形的边长为1,,,…同理可得故正方形的边长为故选:D.【点睛】本题主要考查正方形的性质和锐角三角函数,利用正方形的性质和锐角三角函数找出规律是解题的关键.9、B【解析】因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.【详解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故选:B.【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.10、C【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形.一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A.既是中心对称图形,也是轴对称图形,故不符合题意;B.既是中心对称图形,也是轴对称图形,故不符合题意;C.是中心对称图形,但不是轴对称图形,故符合题意;D.不是中心对称图形,是轴对称图形,故不符合题意;故选C.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.二、填空题(每小题3分,共24分)11、1或4或2.1.【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC,根据该相似三角形的对应边成比例求得DP的长度.【详解】设DP=x,则CP=1-x,本题需要分两种情况情况进行讨论,①、当△PAD∽△PBC时,=∴,解得:x=2.1;②、当△APD∽△PBC时,=,即=,解得:x=1或x=4,综上所述DP=1或4或2.1【点晴】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位.12、x1=0,x2=1【分析】观察本题形式,用因式分解法比较简单,在提取x后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x.【详解】解:x2﹣1x=0即x(x﹣1)=0,解得x1=0,x2=1.故答案为x1=0,x2=1.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的应用.13、6【分析】图中三角形有:△AEG,△ADC,△CFG,△CBA,因为,,所以△AEG∽△ADC∽△CFG∽△CBA,有6中组合,据此可得出答案.【详解】图中三角形有:△AEG,△ADC,△CFG,△CBA,∵,,∴△AEG∽△ADC∽△CFG∽△CBA共有6个组合分别为:△AEG∽△ADC,△AEG∽△CFG,△AEG∽△CBA,△ADC∽△CFG,△ADC∽△CBA,△CFG∽△CBA故答案为6.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.14、3【解析】根据二次根式的乘法法则和零指数幂的意义运算【详解】原式=+1=2+1=3.【点睛】本题考查了二次根式的混合计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算.15、元【分析】设商品原价为x元,则等量关系为原价=现价,根据等量关系列出方程即可求解.【详解】设该商品的原价为x元,根据题意得解得故答案为元.【点睛】本题考查了一元二次方程实际应用中的增长率问题,本剧题意列出方程是本题的关键.16、1【解析】先把x=1代入方程得到m2+m=1,然后解关于m的方程,再利用一元二次方程的定义确定满足条件的m的值.【详解】把x=1代入方程(m+1)x2+4x+m2+m=1得m2+m=1,解得m1=1,m2=-1,而m+1≠1,所以m=1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17、【分析】先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【详解】由根与系数的关系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案为.【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.18、【分析】由同一时刻物高与影长成比例,设出小林的身高为米,列方程求解即可.【详解】解:由同一时刻物高与影长成比例,设小林的身高为米,则即小林的身高为米.故答案为:【点睛】本题考查的是利用相似三角形的原理:“同一时刻物高与影长成比例”,测量物体的高度,掌握原理是解题的关键.三、解答题(共66分)19、(1)要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)为使公司日销售获得最大利润,该产品的单价应定为300元.【分析】(1)根据“总利润=每件的利润×销量”列出一元二次方程即可求出结论;(2)设公司日销售获得的利润为w元,根据“总利润=每件的利润×销量”即可求出w与x的函数关系式,然后利用二次函数求最值即可.【详解】(1)根据题意得,(﹣2x+800)(x﹣200)=15000,解得:x1=250,x2=350,答要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)设公司日销售获得的利润为w元,根据题意得,w=y(x﹣200)=(﹣2x+800)(x﹣200)=﹣2x2+1200x﹣160000=﹣2(x﹣300)2+20000,∵﹣2<0,∴当x=300时,获得最大利润为20000元,答:为使公司日销售获得最大利润,该产品的单价应定为300元.【点睛】此题考查的是一元二次方程的应用和二次函数的应用,掌握实际问题中的等量关系和利用二次函数求最值是解决此题的关键.20、(1)见解析;(2)(-6,4),2【分析】(1)利用位似比为1:2,进而将各对应点坐标扩大为原来的2倍,进而得出答案;(2)利用(1)中位似比得出对应点坐标.【详解】(1)如图所示:△A1B1C1即为所求;(2)∵C点坐标为(-3,2),∴C1点坐标为(-6,4);∵,,,∵,,∴,∴是直角三角形,且,∴.【点睛】本题主要考查了位似变换和锐角三角函数的知识,正确掌握位似比与坐标的关系是解题关键.21、(1)证明见解析;(2);理由见解析;(3).【分析】(1)由直径所对圆周角等于90度可得,进而易证,再根据即可证明;(2)由,可得,进而可知,再由同弧所对圆周角相等可得,再分别证明,,从而可得,即可解决问题;(3)设,,由,可得,可得,由,可得,设,,根据,可得,求出即可解决问题.【详解】解:(1)证明:是直径,,∵,,,,,又∵,(AAS).(2)结论:.理由如下:由(1)可得:,,,是直径,∴,,,又∵,∴,∴,,,,,.(3)解:设,,,,整理得,或(舍弃),,,又∵由(2)可知,,,∵,∴,∴,设,,,,,【点睛】本题综合考查了圆与相似,涉及了圆的性质、切线的性质、全等三角形的判定和性质、相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.22、(1)见解析;(2)△CPA∽△CAB,此时P(,);△BPA∽△BAC,此时P(,);(3)S(3,-2)是△GBD与△GBC公共的自相似点,见解析【分析】(1)利用:两边对应成比例且夹角相等,证明△APC∽△CAB即可;(2)分类讨论:△CPA∽△CAB和△BPA∽△BAC,分别求得P点的坐标;(3)先求得点D的坐标,说明点G(5,)、S(3,-2)在直线AC:上,证得△ABC△SGB,再证得△GBS∽△GCB,说明点S是△GBC的自相似点;又证得△DBG△DSB,说明点S是△GBD的自相似点.从而说明S(3,-2)是△GBD与△GBC公共的自相似点.【详解】(1)如图,∵A(1,0),B(3,0),C(0,1),P(2,0),∴AP=2-1=1,AC=,AB=3-1=2,∴,,∴=,∵∠PAC=∠CAB,∴△APC∽△CAB,故点P是△ABC的自相似点;(2)点P只能在BC上,①△CPA∽△CAB,如图,由(1)得:AC,AB,又,∵△CPA∽△CAB,∴,∴,∴,过点P作PD∥y轴交轴于D,∴,,∴,,∴,,P点的坐标为(,)②△BPA∽△BAC,如图,由前面获得的数据:AB,,∵△BPA∽△BAC,∴,∴,∴,过点P作PE∥y轴交轴于E,∴,∴,∴,,∴,P点的坐标为(,);(3)存在.当点G的坐标为(5,)时,△GBD与△GBC公共的自相似点为S(3,).理由如下:如图:设直线AC的解析式为:,
∴,解得:,∴直线AC的解析式为:,过点D作DE⊥x轴于点E,
∵∠CBO+∠DBE=90,∠EDB+∠DBE=90,∴∠CBO=∠EDB,∴,∴,设BE=a,则DE=3a,∴OE=3-a,∴点D的坐标为(3-a,-3a),∵点D在直线AC上,∴,解得:,∴点D的坐标为(,);如下图:当点G的坐标为(5,)时,△GBD与△GBC公共的自相似点为S(3,).直线AC的解析式为:,
∵,,∴点G、点S在直线AC上,过点G作GH⊥x轴于点H,∵,∴,由S(3,)、B(3,0)知BS⊥x轴,∴△AED、△ABS、△AHG为等腰直角三角形,∵D(,),S,G(,∴,,B,,,,,,,,在△ABC和△SGB中∵,,∴,∵∴∴△ABC△SGB∴∠SBG=∠BCA,又∠SGB=∠BGC,∴△GBS∽△GCB,∴点S是△GBC的自相似点;在△DBG和△DSB中,∵,,∴,且,∴△DBG△DSB;∴点S是△GBD的自相似点.∴S(3,)是△GBD与△GBC公共的自相似点.【点睛】本题主要考查了相似三角形的判定,涉及的知识有:平面内点的特征、待定系数法求直线的解析式、等腰直角三角形的判定和性质、勾股定理,读懂题意,理清“自相似点”的概念是解题的关键.23、(1),;(2)【分析】(1)先提取公因式分解因式分为两个一元一次方程解出即可得到答案;(2)先计算特殊角的三角函数值,再计算加减即可.【详解】(1)解:,∴或,∴,.(2)解:原式.【点睛】本题考查了解一元二次方程-因式分解法、特殊角的三角函数值的混合运算,熟记特殊角的三角函数值是解题的关键,注意不要混淆各特殊角的三角函数值.24、(1)k=12;(2);(3)3【分析】(1)将横坐标为2代入y=3x解出纵坐标,再将坐标点代入反比例函数求出k即可.(2)根据反比例函数的图象性质即可写出.(3)先算出B的坐标,再算出BC的表达式即可算出C的坐标点,则OC即可得出.【详解】(1)把代入中,得把代入中,得,.(2)∵A(2,6)∴根据反比例函数的图象M.(3)将y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度二手住宅自助买卖合同
- 橱柜企业生产设备融资租赁二零一四年合同
- 二零二四年度二手房买卖定金给付合同
- 2024年度电梯故障预警与维修服务合同
- 二零二四年度昌平区企业扶持与发展合同
- 船用设备及配件买卖合同(04版)
- 二零二四年度科技成果转化合同
- 2024电商与快递企业合作共赢框架协议3篇
- 二零二四年度知识产权保护合同(标的知识产权保护)
- 医院廉洁购销合同
- 2023年5G+PLC深度融合解决方案白皮书-施耐德电气中国信通院中国联通
- 重大事故隐患重点事项排查清单1
- 2024年河北交通职业技术学院单招职业倾向性测试题库附答案
- 2023-2024年中考语文三年真题分类汇编(全国版)作文 试卷(含答案解析)
- GB/T 43933-2024金属矿土地复垦与生态修复技术规范
- 营养专科护士进修汇报
- 新一代信息技术基础智慧树知到期末考试答案章节答案2024年哈尔滨师范大学
- 我为南京带货英语作文
- 医院安保反恐防暴演练
- 2024年社区工作者考试必考1000题含完整答案(名师系列)
- 《煤矿重大事故隐患判定标准》解读培训课件2024(中国煤矿安全技术培训中心)
评论
0/150
提交评论