




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第7章图与网络模型2/6/20231课件教学目标与要求【教学目标】通过对本章的学习,理解图的基本概念;掌握最小支撑树、最短路、最大流、中国邮路问题的求法;会利用相关模型解决合理组织人力、物力、财力的优化问题。【知识结构】2/6/20232课件导入案例——七桥问题18世纪德国哥尼斯堡如图(a)七座桥,能否不重复一次走完并回到出发地?(a)七桥问题示意图(b)七桥问题简单图1736年,欧拉在圣彼得堡科学院作了一次学术报告。在报告中,他证明了鉴别任一图形能否一笔画出的准则,即欧拉定理。2/6/20233课件导入案例运筹学中把一些研究对象用节点表示,对象之间的关系用连线边表示。用点、边的集合构成图。图论是研究有节点和边所组成图形的数学理论和方法。图是网络分析的基础,根据具体研究的网络对象(如:铁路网、电力网、通信网等),赋予图中各边某个具体的参数,如时间、流量、费用、距离等,规定图中各节点代表具体网络中任何一种流动的起点,中转点或终点,然后利用图论方法来研究各类网络结构和流量的优化分析。图论广泛地应用于物理学、化学、信息论、科学管理、电子计算机等各个领域。如在管理中网络合理架设、网络承载能力分析、服务设施布点、匹配问题等。2/6/20235课件本章主要内容7.1图的基本概念7.2树图及图的最小支撑树7.2.1树图的基本性质7.2.2最小支撑树的求法:避圈法和破圈法案例7-1印第安那州公路规划问题7.3最短路问题7.3.1两点间最短路的Dijkstra标号算法7.3.3各点间最短路的矩阵算法*案例7-2设备更新问题7.4中国邮递员问题案例7-3货场巡视路线7.5网络最大流问题7.5.1基本概念7.5.2Ford-Fulkerson标号算法案例7-4航空公司的最大流量7.6最小费用流问题*7.6.1最小费用流的数学模型7.6.2最小费用最大流的标号算法案例7-5货物配送问题本章小结2/6/20236课件7.1.1图的若干示例【例7.1】
有A、B、C、D、E5个球队,已比赛过,就在这两队相应的点之间连一条线.
[P1]【例7.2】8种化学药品,不能存放在同一个库房里的用连线表示。【例7.3】若在五支球队比赛中,甲胜乙表示为“甲→乙”,则右图表明A三胜一负,B和E一胜一负,C和D一胜两负。2/6/20237课件7.1.2图的基本概念次,奇点,偶点,孤立点,悬挂点,悬挂边点的关联边的数目称为的次(也称度或线度),记为d(v)(环在计算时算作两次,称为入次和出次);次为奇数的点称为奇点;次为偶数的点称为偶点;次为0的点称为孤立点;次为1的点称为悬挂点;与悬挂点相边关联的边称为悬挂边。【定理7.1】图中,所有顶点的次之和是边数的2倍。【定理7.2】任一个图中,奇点的个数为偶数。链,圈,路,回路,连通图点和边的交错序列中,若边各不相同称为链;封闭的链称为圈;在链中如果点也各不相同称为路;起点与终点重合的路称为回路;任意两点之间至少能找到一条链的图称为连通图。图7.5(a)v1v2v3v4e1e2e3e4e5a1a2a3v1v2v3v5e6图7.5(b)2/6/20239课件7.1.2图的基本概念图7.5(a)v1v2v3v4e1e2e3e4e5a1a2a3v1v2v3v5e6图7.5(b)完全图,子图,支撑图(部分图)一个简单图中若任意两点之间均有边相连,称这样的图为完全图,如图7.5(b);图
如果满足的子图;如果满足的一个支撑图(或称为部分图)。如图7.6(b)是图(a)的子图,并不是支撑图,图(c)是图(a)的支撑图。2/6/202310课件承【例7-2】这是一个染色问题,其方法:找出次数最大的点,将其与不相邻的点组成新的点集;再从其余的子图中找出次数最大的点,将其与不相邻的点组成新的点集,直到子图的点集为空.v1v8v2v7v3v6v5v4{,}{,}{,,}{}7.1.2图的基本概念至少需要3个库房2/6/202311课件7.2.1树图的概念和性质2/6/202313课件7.2.2最小支撑树的求法——避圈法任选vi,使vi∈V,
其余点在中从V与的连线中找一条最小边,
使其包含在最小支撑树内所有点均在V中?结束是否ABCDEF872594631【例7.4】求下图最小支撑树W(T*)=172/6/202314课件7.2.2最小支撑树的求法——破圈法任取一个圈,从圈中去掉一条最大的边(如果有两条或两条以上的边都是权最大的边,则任意去掉其中一条).在余下的图中重复这个步骤,直到不含圈的图为止,此时的图便是最小树.ABDEF82594631C743取回路ABC,去掉最大边[A,B];取回路BCE,去掉最大边[B,E];取回路BCED,去掉最大边[D,E];取回路BCEFD,去掉最大边[B,D]W(T*)=172/6/202315课件7.3.1求两点间最短路的Dijkstra标号算法2444633223322ABCTDEFS02356789结论:最短路径SADT,或SCFT;最短路长:9
【例7.6】2/6/202317课件7.3.1求两点间最短路的Dijkstra标号算法【例7.7】用Dijkstra方法求点S到点T的最短路及路长。056813最短路线:SACT
或:SAT最短路长:13(1)给S标号0(2)V={S},补集CV={A,B,C,T},min{LSS+DSB,LSS+DSA}={0+5,0+6}=5
给B标号5,[S,B]加粗(2)V={S,B},CV={A,C,T},min{LSS+DSA,LSB+DBC}={0+6,5+8}=6
给A标号6,[S,A]加粗(3)V={S,B,A},CV={C,T},min{LSA+DAC,LSA+DAT,LSB+DBC}={6+2,6+7,5+6}=8
给C标号8,[A,C]加粗(3)V={S,B,A,C},CV={T},min{LSA+DAT,LSC+DCT}={6+7,8+5}=13
给T标号13,[A,C]或[A,T]加粗WinQSB演示Excel演示Lingo演示2/6/202318课件7.3.3求网络各点之间最短路的矩阵计算法*【例7.9】求各点间最短路矩阵解(1)构造邻接矩阵(2)计算经过1个中间点的可达矩阵一般地(3)利用递推公式计算经过1个中间点的可达矩阵自编软件ExcelORM所见即所得.2/6/202319课件7.4中国邮递员问题抽象为图的语言,就是给定一个连通图,在每边上赋予一个非负的权,要求一个圈,过每边至少一次,并使圈的总权最小。我国管梅谷教授在1962年首先提出的,因此在国际上通称为中国邮递员问题。结论1:若网络图上的所有点均为偶点,则邮递员可以走遍所有街道,做到每条街道只走一次而不重复。结论2:最短的投递路线具有这样的性质:①有奇点连线的边最多重复一次;②在该网络图的每个回路上,有重复的边的长度不超过回路总长的一半。【例7.10】
解(1)找出奇点(4个)(2)连接不超过回路长一半的边组成两对(虚线)(3)虚线重复一次,其余边只走一次(有多种走法)2/6/202321课件案例7-3货场巡视路线解(1)找出奇点(6个)(2)连接不超过回路长一半的边组成两对(虚线)(3)虚线重复一次,其余边只走一次(有多种走法)2/6/202322课件7.5网络最大流问题2/6/202323课件7.5.1基本概念2/6/202325课件7.5.1基本概念2/6/202326课件7.5.2最大流问题Ford-Fulkerson标号算法【例7.12】用标号法求网络的最大流。解给v1标号(0,+∞)[v1,v3]非饱和弧,给v3标号,标号值min{+∞,9-5}=4,即v3标号(v1,4)[v3,v6]非饱和弧,给v6标号,标号值min{4,5-0}=4,即v6标号(v3,4)[v6,v7]非饱和弧,给v7标号,标号值min{4,10-3}=4,即v7标号(v6,4)逆向追踪找到增广链v1v3v6v7,最大可调整流量ε(t)=4增广链上所有的弧均为前向弧,流量+4。2/6/202329课件案例7-4航空公司的最大流量3(0)2(0)1(0)3(0)2(0)洛杉矶JSDeDL朱诺西雅图丹佛达拉斯解先绘制容量网络图再用Ford-Fulkerson标号算法3(2)2(2)3(2)(J,1)(S,1)(L,1)1(1)2(1)3(3)最小割2/6/202330课件7.6.1最小费用流的数学模型2/6/202331课件7.6.2最小费用最大流的标号算法2/6/202332课件7.6.2最小费用最大流的标号算法承【例7.15】,用标号算法求从节点1到节点5的最小费用最大流。解赋初始流0流,构造容量网络由费用构造加权网络(零流弧以bij加权,饱和弧构造反向弧以-bij反向加权,非饱和且非零流以bij和-bij双向加权).并求最短路即增广链.在增广链上调整流量2/6/202333课件案例7-5货物配送问题三个供应商运往每个仓库最大运输量为6;两个仓库运往每个工厂的最大运输量为6;单位费用=商品价格+单位运价;仓库到工厂的运输单价为已知数;700200500400v1v3v4v2v5v6v7供应商仓库工厂(6,)(6,)(6,)(6,)(6,)(6,)234402296023000232002315023200(6,)(6,)(6,)(6,)供应商商品价格单位运价仓库1仓库2123225002270022300300+4×运送路程200+5×运送路程500+2×运送路程300+4×160=940200+5×50=450500+2×200=900300+4×40=460200+5×60=500500+2×100=700设fij表示从节点i到j的流量,则有:fij<=6;目标总费用最小:min=∑bijfij;供应能力限制:f14+f15<=10;f24+f25<=10;f34+f35<=10;工厂需求限制:f46+f56=10;f47+f57=6;中间点平衡:f14+f24+f34=f46+f47;f15+f25+f35=f56+f57;2/6/202334课件案例7-5货物配送问题有如下Lingo模型:min=23440*f14+22960*f15+23150*f24+23200*f25+23200*f34+23000*f35+200*f46+700*f47+400*f56+500*f57;!总费用最小;f14+f15<=10;!产大于销,运出货物不超过各供货商供应能力;f24
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论