


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直棱柱和圆锥的侧面展开图【教学目标】1.能理解几何体的展开图及由几何体的展开图还原成几何体.2.通过观察和动手操作,经历和体验图形的变化过程,培养试验操作的能力,发展空间观念.【重点难点】重点:理解基本几何体与其展开图的联系,由几何体的展开图还原成几何体.难点:正确地判断哪些平面图形可折叠成立体图形.┃教学过程设计┃教学过程 设计意图一、创设情境,导入新课一个外形为长方形的纸箱的大小如图所示(单位:cm),一只昆虫要从纸箱顶点A沿表面爬到另一个顶点B,它沿哪条路线爬行的距离最短?请说明理由,并求出这个最短距离.(结果保留两位小数)观察下面小亮解答问题的过程,想一想他的解法是否正确,为什么? 实例引入,直奔重难点.二、师生互动,探究新知小亮是这样回答的:将纸箱看成长方体,它的平面展开图如图所示,连接AB,根据两点间线段最短,可知线段AB就是昆虫爬行距离最短的路线.在Rt△ACB中,根据勾股定理,有AB=AC2+BC2=302≈(cm).教师分析:从最后结论看,小亮的解答是正确的,但他分析问题的过程还不全面,因为从A处沿纸箱表面到B处有无数条路线可走,而供选择的最短路线只有3条,即(1)昆虫沿面EDCA和面EDBG从A处到B处,展开图如上图所示,最短距离是小亮所求的值.(2)昆虫沿左侧面和上面EDBG从点A到点B,展开图如图所示.最短距离为AB=AD2+BD2=2000≈(cm).(3)昆虫沿面EDCA和面DBFC从点A到点B,展开图如图所示.最短距离为AB=AF2+BF2=2600≈(cm).比较上面(1)(2)(3)的距离知,最短路线是沿面EDCA和面EDBG从A到B的路线.教师给学生们演示昆虫在几何体上的爬行路线(参看视频:昆虫爬行). 通过合作探究,解决重难点.三、运用新知,解决问题教材第108页练习第1,2题.学生独立完成. 自我检验对所学知识的掌握程度,为以后的学习积累经验.四、课堂小结,提炼观点本节课你学到了什么?学生思考回答,教师总结. 知识回顾,形成系统.五、布置作业,巩固提升必做:教材第108~109页A组.选做:教材第109页B组. ┃教学小结┃【板
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论