2023届四川省自贡市衡水一中富顺学校高三第一次模拟考试数学试卷含解析_第1页
2023届四川省自贡市衡水一中富顺学校高三第一次模拟考试数学试卷含解析_第2页
2023届四川省自贡市衡水一中富顺学校高三第一次模拟考试数学试卷含解析_第3页
2023届四川省自贡市衡水一中富顺学校高三第一次模拟考试数学试卷含解析_第4页
2023届四川省自贡市衡水一中富顺学校高三第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若集合,则()A. B.C. D.2.若P是的充分不必要条件,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.由曲线围成的封闭图形的面积为()A. B. C. D.4.若复数,,其中是虚数单位,则的最大值为()A. B. C. D.5.设复数满足,则()A.1 B.-1 C. D.6.已知,且,则()A. B. C. D.7.已知,则下列说法中正确的是()A.是假命题 B.是真命题C.是真命题 D.是假命题8.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入、的值分别为、,则输出的值为()A. B. C. D.9.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是().A. B. C. D.10.已知函数,,若,对任意恒有,在区间上有且只有一个使,则的最大值为()A. B. C. D.11.下图所示函数图象经过何种变换可以得到的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位12.已知,则()A. B. C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知向量=(-4,3),=(6,m),且,则m=__________.14.给出下列四个命题,其中正确命题的序号是_____.(写出所有正确命题的序号)因为所以不是函数的周期;对于定义在上的函数若则函数不是偶函数;“”是“”成立的充分必要条件;若实数满足则.15.已知关于的不等式对于任意恒成立,则实数的取值范围为_________.16.设函数,则满足的的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)己知,,.(1)求证:;(2)若,求证:.18.(12分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)19.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.20.(12分)在底面为菱形的四棱柱中,平面.(1)证明:平面;(2)求二面角的正弦值.21.(12分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;(2)设P是椭圆上的动点,求面积的最大值.22.(10分)已知椭圆的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

先确定集合中的元素,然后由交集定义求解.【详解】,.故选:A.【点睛】本题考查求集合的交集运算,掌握交集定义是解题关键.2、B【解析】

试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B.考点:逻辑命题3、A【解析】

先计算出两个图像的交点分别为,再利用定积分算两个图形围成的面积.【详解】封闭图形的面积为.选A.【点睛】本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.4、C【解析】

由复数的几何意义可得表示复数,对应的两点间的距离,由两点间距离公式即可求解.【详解】由复数的几何意义可得,复数对应的点为,复数对应的点为,所以,其中,故选C【点睛】本题主要考查复数的几何意义,由复数的几何意义,将转化为两复数所对应点的距离求值即可,属于基础题型.5、B【解析】

利用复数的四则运算即可求解.【详解】由.故选:B【点睛】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.6、B【解析】分析:首先利用同角三角函数关系式,结合题中所给的角的范围,求得的值,之后借助于倍角公式,将待求的式子转化为关于的式子,代入从而求得结果.详解:根据题中的条件,可得为锐角,根据,可求得,而,故选B.点睛:该题考查的是有关同角三角函数关系式以及倍角公式的应用,在解题的过程中,需要对已知真切求余弦的方法要明确,可以应用同角三角函数关系式求解,也可以结合三角函数的定义式求解.7、D【解析】

举例判断命题p与q的真假,再由复合命题的真假判断得答案.【详解】当时,故命题为假命题;记f(x)=ex﹣x的导数为f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,∴f(x)>f(0)=1>0,即,故命题为真命题;∴是假命题故选D【点睛】本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.8、B【解析】

列出循环的每一步,由此可得出输出的值.【详解】由题意可得:输入,,,;第一次循环,,,,继续循环;第二次循环,,,,继续循环;第三次循环,,,,跳出循环;输出.故选:B.【点睛】本题考查根据算法框图计算输出值,一般要列举出算法的每一步,考查计算能力,属于基础题.9、B【解析】

求出在的解析式,作出函数图象,数形结合即可得到答案.【详解】当时,,,,又,所以至少小于7,此时,令,得,解得或,结合图象,故.故选:B.【点睛】本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.10、C【解析】

根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【详解】由题意知,则其中,.又在上有且只有一个最大值,所以,得,即,所以,又,因此.①当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;②当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;③当时,,此时取可使成立,当时,,所以当时,成立;综上所得的最大值为.故选:C【点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.11、D【解析】

根据函数图像得到函数的一个解析式为,再根据平移法则得到答案.【详解】设函数解析式为,根据图像:,,故,即,,,取,得到,函数向右平移个单位得到.故选:.【点睛】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.12、B【解析】

结合求得的值,由此化简所求表达式,求得表达式的值.【详解】由,以及,解得..故选:B【点睛】本小题主要考查利用同角三角函数的基本关系式化简求值,考查二倍角公式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、8.【解析】

利用转化得到加以计算,得到.【详解】向量则.【点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.14、【解析】

对①,根据周期的定义判定即可.对②,根据偶函数满足的性质判定即可.对③,举出反例判定即可.对④,求解不等式再判定即可.【详解】解:因为当时,所以由周期函数的定义知不是函数的周期,故正确;对于定义在上的函数,若,由偶函数的定义知函数不是偶函数,故正确;当时不满足则“”不是“”成立的充分不必要条件,故错误;若实数满足则所以成立,故正确.正确命题的序号是.故答案为:.【点睛】本题主要考查了命题真假的判定,属于基础题.15、【解析】

先将不等式对于任意恒成立,转化为任意恒成立,设,求出在内的最小值,即可求出的取值范围.【详解】解:由题可知,不等式对于任意恒成立,即,又因为,,对任意恒成立,设,其中,由不等式,可得:,则,当时等号成立,又因为在内有解,,则,即:,所以实数的取值范围:.故答案为:.【点睛】本题考查不等式恒成立问题,利用分离参数法和构造函数,通过求新函数的最值求出参数范围,考查转化思想和计算能力.16、【解析】

当时,函数单调递增,当时,函数为常数,故需满足,且,解得答案.【详解】,当时,函数单调递增,当时,函数为常数,需满足,且,解得.故答案为:.【点睛】本题考查了根据函数单调性解不等式,意在考查学生对于函数性质的灵活运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】

(1)采用分析法论证,要证,分式化整式为,再利用立方和公式转化为,再作差提取公因式论证.(2)由基本不等式得,再用不等式的基本性质论证.【详解】(1)要证,即证,即证,即证,即证,即证,该式显然成立,当且仅当时等号成立,故.(2)由基本不等式得,,当且仅当时等号成立.将上面四式相加,可得,即.【点睛】本题考查证明不等式的方法、基本不等式,还考查推理论证能力以及化归与转化思想,属于中档题..18、(1)(2)详见解析(3)初中生平均参加公益劳动时间较长【解析】

(1)由图表直接利用随机事件的概率公式求解;(2)X的所有可能取值为0,1,2,3.由古典概型概率公式求概率,则分布列可求;(3)由图表直接判断结果.【详解】(1)100名学生中共有男生48名,其中共有20人参加公益劳动时间在,设男生中随机抽取一人,抽到的男生参加公益劳动时间在的事件为,那么;(2)的所有可能取值为0,1,2,3.∴;;;.∴随机变量的分布列为:(3)由图表可知,初中生平均参加公益劳动时间较长.【点睛】本小题主要考查古典概型的计算,考查超几何分布的分布列的计算,属于基础题.19、(1)(2)【解析】

(1)由,可求,然后由时,可得,根据等比数列的通项可求(2)由,而,利用裂项相消法可求.【详解】(1)当时,,解得,当时,①②②①得,即,数列是以2为首项,2为公比的等比数列,;(2)∴,∴,,.【点睛】本题考查递推公式在数列的通项求解中的应用,等比数列的通项公式、裂项求和方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.20、(1)证明见解析;(2)【解析】

(1)由已知可证,即可证明结论;(2)根据已知可证平面,建立空间直角坐标系,求出坐标,进而求出平面和平面的法向量坐标,由空间向量的二面角公式,即可求解.【详解】方法一:(1)依题意,且∴,∴四边形是平行四边形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且为的中点,∴,∵平面且,∴平面,以为原点,分别以为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,,,,∴设平面的法向量为,则,∴,取,则.设平面的法向量为,则,∴,取,则.∴,设二面角的平面角为,则,∴二面角的正弦值为.方法二:(1)证明:连接交于点,因为四边形为平行四边形,所以为中点,又因为四边形为菱形,所以为中点,∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【点睛】本题主要考查线面平行的证明,考查空间向量法求面面角,意在考查直观想象、逻辑推理与数学运算的数学核心素养,属于中档题.21、(1),,;(2).【解析】

(1)利用公式即可求得曲线的极坐标方程;联立直线和曲线的极坐标方程,即可求得交点坐标;(2)设出点坐标的参数形式,将问题转化为求三角函数最值的问题即可求得.【详解】(1)曲线的极坐标方程:联立,得,又因为都满足两方程,故两曲线的交点为,.(2)易知,直线.设点,则点到直线的距离(其中).面积的最大值为.【点睛】本题考查极坐标方程和直角坐标方程之间的相互转化,涉及利用椭圆的参数方程求面积的最值问题,属综合中档题.22、(1);(2)存在,当时,以线段为直径的圆恰好经过坐标原点O.【解析】

(1)设椭圆的焦半距为,利用离心率为,椭圆的长轴长为1.列出方程组求解,推出,即可得到椭圆的方程.(2)存在实数使得以线段为直径的圆恰好经过坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论