下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市普宁大长陇中学高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某程序框图如图所示,若运行该程序后输出S=()A. B. C. D.参考答案:D【分析】通过分析可知程序框图的功能为计算,根据最终输出时的值,可知最终赋值时,代入可求得结果.【详解】根据程序框图可知其功能计算:初始值为,当时,输出可知最终赋值时
本题正确选项:【点睛】本题考查根据程序框图的功能计算输出结果,关键是能够明确判断出最终赋值时的取值.2.将参数方程化为普通方程为(
)A.
B.
C.
D.参考答案:C略转化为普通方程:,但是3.建立坐标系用斜二测画法画正△ABC的直观图,其中直观图不是全等三角形的一组是()参考答案:C略4.求S=1+3+5+……+101的流程图程序如右图所示,其中①应为A. B. C. D.
参考答案:B5.已知A、B是两个非空集合,定义为集合A、B的“和集”,若,则中元素的个数是(
)A.4
B.5
C.6
D.16参考答案:C略6.直线过点(-3,4),且在两坐标轴上的截距之和为12,则直线方程为(
)
A.
B.
C.
D.参考答案:C7.设成等比数列,其公比为2,则的值为(
)A.
B.
C.
D.1参考答案:A8.函数的图象大致是参考答案:D9.设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的(
)A.必要不充分条件 B.充分不必要条件C.充分必要条件 D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【专题】直线与圆.【分析】把a=1代入可得直线的方程,易判平行;而由平行的条件可得a的值,进而由充要条件的判断可得答案.【解答】解:当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,显然平行;而由两直线平行可得:a(a+1)﹣2=0,解得a=1,或a=﹣2,故不能推出“a=1”,由充要条件的定义可得:“a=1”是“直线l1:ax+2x﹣1=0与直线l2:x+(a+1)y+4=0平行”的充分不必要条件.故选B【点评】本题为充要条件的判断,涉及直线的平行的判定,属基础题.10.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为
(
)
A.1372
B.2024
C.3136
D.4495参考答案:C
解法一:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法;再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.
综上可知,可得不同三角形的个数为1372+1764=3136.
解法二:二、填空题:本大题共7小题,每小题4分,共28分11.已知双曲线的左,右焦点分别为,点P在双曲线的右支上,且,则此双曲线的离心率e的取值范围为
.参考答案:解一:由定义知,又已知,解得,,在中,由余弦定理,得,要求的最大值,即求的最小值,当时,解得.即的最大值为.解二:设,由焦半径公式得,∵,∴,∴,∵,∴,∴的最大值为.12.方程表示焦点在y轴上的椭圆,则m的取值范围是__________.参考答案:方程表示焦点在轴上的椭圆,∴,解得.13.设Sn是公差为d的等差数列{an}的前n项和,则数列S6﹣S3,S9﹣S6,S12﹣S9是等差数列,且其公差为9d.通过类比推理,可以得到结论:设Tn是公比为2的等比数列{bn}的前n项积,则数列,,是等比数列,且其公比的值是
.参考答案:512【考点】类比推理.【分析】由等差数列的性质可类比等比数列的性质,因此可根据等比数列的定义求出公比即可.【解答】解:由题意,类比可得数列,,是等比数列,且其公比的值是29=512,故答案为512.【点评】本题主要考查等比数列的性质、类比推理,属于基础题目.14.学校为了提高学生的数学素养,开设了《数学史选讲》、《对称与群》、《球面上的几何》三门选修课程,供高二学生选修,已知高二年级共有学生600人,他们每个人都参加且只参加一门课程的选修,为了了解学生对选修课的学习情况,现用分层抽样的方法从中抽取30名学生进行座谈.据统计,参加《数学史选讲》、《对称与群》、《球面上的几何》的人数依次组成一个公差为﹣40的等差数列,则应抽取参加《数学史选讲》的学生的人数为
.参考答案:12【考点】分层抽样方法;等差数列的通项公式.【分析】由题意,每个个体被抽到的概率是=,抽取30名学生进行座谈,公差为﹣2,即可得出结论.【解答】解:由题意,每个个体被抽到的概率是=,抽取30名学生进行座谈,公差为﹣2,设应抽取参加《数学史选讲》的学生的人数为x,则x+x﹣2+x﹣4=30,∴x=12,故答案为:12.【点评】本题考查分层抽样,在分层抽样过程中每个个体被抽到的概率相等,这是解题的依据,本题是一个基础题.15.已知f(x)=ax2-c,且-4≤f(1)≤-1,-1≤f(2)≤5,则f(3)的取值范围为___________参考答案:[-1,20]16.复数满足,则复数的实部与虚部之差为
参考答案:0
略17.设A是平面向量的集合,是定向量,对属于集合A,定义.现给出如下四个向量:①,②,③,④.那么对于任意、,使恒成立的向量的序号是
(写出满足条件的所有向量的序号).参考答案:①③④【考点】平面向量数量积的运算.【专题】计算题;阅读型.【分析】由于①是零向量代入f(x)检验是否满足要求即可;对于一般情况,利用向量的数量积的运算律求出f(x)f(y);要满足条件得到,再判断②③④哪个满足即可.【解答】解:对于①当时,满足当时,=要满足需∴对于③④故答案为①③④【点评】本题考查向量的数量积的运算律:满足交换量不满足结合律但当向量与实数相乘时满足结合律.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.记数列{an}的前n项和为Sn,已知点在函数的图像上.(1)求数列{an}的通项公式;(2)设,求数列{bn}的前9项和.参考答案:(1);(2).【分析】(1)本题首先可根据点在函数的图像上得出,然后根据与的关系即可求得数列的通项公式;(2)首先可根据数列的通项公式得出,然后根据裂项相消法求和即可得出结果。【详解】(1)由题意知.当时,;当时,,适合上式.所以.(2).则。【点睛】本题考查根据数列的前项和为求数列的通项公式,考查裂项相消法求和,与满足以及,考查计算能力,是中档题。19.(本题满分12分)已知定义在R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=.(1)求f(1)和f(-1)的值;(2)求f(x)在[-1,1]上的解析式.参考答案:(1)∵f(x)是周期为2的奇函数,∴f(1)=f(1-2)=f(-1)=-f(1),∴f(1)=0,f(-1)=0.……4分(2)由题意知,f(0)=0.当x∈(-1,0)时,-x∈(0,1).由f(x)是奇函数,∴f(x)=-f(-x)=-=-,综上,……12分20.已知函数f()=﹣x3+x2﹣m(0<m<20).(1)讨论函数f(x)在区间上的单调性;(2)若曲线y=f(x)仅在两个不同的点A(x1,f(x1)),B(x2,f(x2))处的切线都经过点(2,lg),其中a≥1,求m的取值范围.参考答案:【考点】6H:利用导数研究曲线上某点切线方程;6B:利用导数研究函数的单调性.【分析】(1)求得f(x)=﹣x3+mx2﹣m,求出导数,讨论当≥6即9≤m<20时,当2<<6,即为3<m<9时,当≤2,即0<m≤3时,可得f(x)的单调性;(2)求出f(x)的导数,可得A,B处的切线方程,代入点(2,﹣lga),可得x1,x2为方程﹣lga﹣(﹣x3+mx2﹣m)=(﹣3x2+2mx)(2﹣x)的两个不等实根,化简整理可得,2x3﹣(m+6)x2+4mx﹣m+lga=0,令g(x)=2x3﹣(m+6)x2+4mx﹣m+lga,求出导数和极值点,由题意可得g(x)必有一个极值为0,对m讨论,结合a≥1,解不等式即可得到所求m的范围.【解答】解:(1)函数f()=﹣x3+x2﹣m,可得f(x)=﹣x3+mx2﹣m,f′(x)=﹣3x2+2mx=﹣x(3x﹣2m),当≥6即9≤m<20时,函数f(x)在区间上的单调递增;当2<<6,即为3<m<9时,f(x)在递减;当≤2,即0<m≤3时,函数f(x)在区间上的单调递减;(2)f′(x)=﹣3x2+2mx,可得A处的切线方程:y﹣(﹣x13+mx12﹣m)=(﹣3x12+2mx)(x﹣x1),同理可得B处的切线方程:y﹣(﹣x23+mx22﹣m)=(﹣3x22+2mx)(x﹣x2),代入点(2,﹣lga),可得x1,x2为方程﹣lga﹣(﹣x3+mx2﹣m)=(﹣3x2+2mx)(2﹣x)的两个不等实根,化简整理可得,2x3﹣(m+6)x2+4mx﹣m+lga=0,令g(x)=2x3﹣(m+6)x2+4mx﹣m+lga,g′(x)=6x2﹣2(m+6)x+4m=2(3x﹣m)(x﹣2),由0<m<20,可得g′(x)=0,可得x=2或x=.g(2)=3m﹣8+lga,g()=﹣m3+m2﹣m+lga,由题意可得g(x)必有一个极值为0,(Ⅰ)若m<2,即0<m<6,由g(2)=0,g()>0,可得lga=8﹣3m≥0,即m≤,则g()=﹣m3+m2﹣m+8﹣3m=﹣(m﹣6)3>0成立,即有0<m≤;①由g(2)<0,g()=0,可得lga+3m﹣8<0,﹣m3+m2﹣m+lga=0,由lga≥0,可得0≤m≤9﹣3或m≥9+3,由g(2)=m3﹣m2+m﹣8+3m=(m﹣6)3<0,解得m<6,即有0<m≤9﹣3;②(Ⅱ)若m>2,即6<m<20,由g(2)=0,g()<0,可得lga=8﹣3m≥0,即m≤,则m无解;③由g(2)>0,g()=0,可得lga+3m﹣8>0,﹣m3+m2﹣m+lga=0,由lga≥0,可得0≤m≤9﹣3或m≥9+3,由g(2)=m3﹣m2+m﹣8+3m=(m﹣6)3>0,解得m>6,即有9+3≤m<20,④综上可得,0<m≤或9+3≤m<20.21.已知函数。(1)求f(x)的单调区间.(2)求f(x)在区间的最值.参考答案:(1)f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞)(2),【详解】试题分析:(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)根据函数的单调性求出的最大值和最小值即可.试题解析:(1)函数的定义域为,由得,由.的单调递增区间为,单调递减区间为(2)由(1)知当,的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年文化旅游景区运营合同
- 2024年文化艺术品数字化展示与合作合同
- 2024年房地产开发商与建筑设计公司合作合同
- 2023年佛山家具项目评估分析报告
- 2024年特定蛋白分析仪器试剂项目评估分析报告
- 2024年定制版:网络安全防护与应急响应服务合同
- 物业保安个人工作总结报告怎么写(3篇)
- 2024年新城区驾校训练场地施工合同
- 语文教学月总结5篇
- 暑假工怎么写辞职报告(7篇)
- 原发性骨髓纤维化课件
- 消防工程施工验收单样板
- 中央空调人员培训内容表
- 发现生活中的美-完整版PPT
- 小学道德与法治人教三年级上册第三单元安全护我成长-《遭遇陌生人》教案
- CAMDS操作方法及使用技巧
- 平狄克《微观经济学》(第8版)笔记和课后习题详解
- 最优化理论与算法课程教学大纲
- 2022年湖北省武汉市江岸区育才第二小学六上期中数学试卷
- (最新版)中小学思政课一体化建设实施方案三篇
- PSA提氢装置操作规程
评论
0/150
提交评论