版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省佛山市狮山高级中学2021-2022学年高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图所示为某几何体的三视图,其体积为48π,则该几何体的表面积为()A.24π B.36π C.60π D.78π参考答案:D【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个圆柱挖掉两个顶点相同的圆锥所得的组合体,由三视图求出几何元素的长度,设圆锥的底面半径是r,由柱体、锥体的体积公式和几何体的体积是求出列出方程求出r,由圆柱、圆锥的侧面积该几何体的表面积.【解答】解:根据三视图可知几何体是:一个圆柱挖掉两个顶点相同的圆锥所得的组合体,且底面分别是圆柱的上下底面所得的组合体,圆柱的高是8、圆锥的高是4,设圆柱、圆锥的底面半径是r,∵体积为48π,∴=48π,解得r=3,则圆锥的母线长是=5,∴该几何体的表面积S=2π×3×8+2×π×3×5=78π,故选:D.2.函数的图象大致为(
)A.
B.
C.
D.参考答案:D3.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为(
)A.2 B. C.6 D.8参考答案:A【分析】先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,所以该四棱锥的体积为.故选A【点睛】本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型.4.已知向量a=(2,1),b=(3,2),若a(a+b),则实数等于(
)A.
B.
C.
D.
参考答案:D5.设变量、满足线性约束条件,则目标函数的最小值为A.
B.
C.
D.参考答案:D略6.从集合{1,2,3,…,11}中的任意取两个元素作为椭圆方程中的和,则能组成落在矩形区域内的椭圆的个数是A、43
B、72
C、86
D、90参考答案:答案:B7.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A.46,45,56 B.46,45,53 C.47,45,56 D.45,47,53参考答案:A【考点】茎叶图;众数、中位数、平均数;极差、方差与标准差.【分析】直接利用茎叶图求出该样本的中位数、众数、极差,即可.【解答】解:由题意可知茎叶图共有30个数值,所以中位数为第15和16个数的平均值:=46.众数是45,极差为:68﹣12=56.故选:A.【点评】本题考查该样本的中位数、众数、极差,茎叶图的应用,考查计算能力.8.给出下列四个命题:①若集合、满足,则;
②给定命题,若“”为真,则“”为真;③设,若,则;④若直线与直线垂直,则.
其中正确命题的个数是(
)A、1
B、2
C、3
D、4参考答案:B略9.已知函数,若,不等式恒成立,则实数m的取值范围是
(A)
(B)
(C)
(D)
参考答案:【知识点】导数
B11D解析:根据恒成立,所以函数在时单调递增,所以,不等式恒成立,所以D正确.【思路点拨】根据函数的导数确定函数的单调性,确定在定义域下的取值,最后再求出m的取值范围.10.十七世纪英国著名数学家、物理学家牛顿创立的求方程近似解的牛顿迭代法,相较于二分法更具优势,如图给出的是利用牛顿迭代法求方程x2=6的正的近似解的程序框图,若输入a=2,?=0.02,则输出的结果为()A.3 B.2.5 C.2.45 D.2.4495参考答案:C【考点】程序框图.【分析】由题意,模拟程序的运行过程,依次写出每次循环得到的b,a,z的值,即可得出跳出循环时输出a的值.【解答】解:模拟程序的运行,可得a=2,?=0.02,执行循环体,b=2,a=,z=,不满足条件z≤?,执行循环体,b=,a=,z=,满足条件z≤?,退出循环,输出a的值为=2.45.故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.(坐标系与参数方程选讲选做题)曲线:(为参数)的普通方程为
▲
.参考答案:12.直线经过椭圆的一个焦点和一个顶点,则椭圆的离心率为____
___;参考答案:略13.如图:两圆相交于点、,直线与分别与两圆交于点、和、,,则
.参考答案:3由题设得,,,.14.已知函数f(x)在(0,2)上是增函数,且是偶函数,则、、的大小顺序是
(按从小到大的顺序).参考答案:15.将等比数列{an}的各项排成如图所示的三角形数阵,,则数阵的第5行所有项之和为参考答案:992【考点】89:等比数列的前n项和.【分析】由题意可的第5行a11,a12,a13,a14,a15,再根据等比数列的前n项和公式计算即可.【解答】解:由题意可的第5行a11,a12,a13,a14,a15,∵,∴a11=×210=32,∴a11+a12+a13+a14+a15==992故答案为:99216.函数的定义域为
参考答案:17.如图,在矩形中,点为的中点,点在边上,若,则的值是
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在三棱柱ABC﹣A1B1C1中,B1B=B1A=BA=BC=2,∠B1BC=90°,D为AC的中点,AB⊥B1D.(Ⅰ)求证:平面ABC⊥平面ABB1A1;(Ⅱ)求B到平面AB1D的距离.参考答案:考点:点、线、面间的距离计算;平面与平面垂直的判定.专题:综合题;空间位置关系与距离.分析:(Ⅰ)取AB中点为O,连接OD,OB1,证明AB⊥平面B1OD,可得AB⊥OD,又OD⊥BB1,因为AB∩BB1=B,即可证明平面ABB1A1⊥平面ABC;(Ⅱ)利用=,求B到平面AB1D的距离.解答: (Ⅰ)证明:取AB中点为O,连接OD,OB1.因为B1B=B1A,所以OB1⊥AB.又AB⊥B1D,OB1∩B1D=B1,所以AB⊥平面B1OD,因为OD?平面B1OD,所以AB⊥OD,由已知,BC⊥B1B,又OD∥BC,所以OD⊥⊥B1B,因为AB∩B1B=B,所以OD⊥平面ABB1A1.又OD?平面ABC,所以平面平面ABC⊥平面ABB1A1;…(Ⅱ)解:由(Ⅰ)知,B1O=,S△ABC==2,B1A=2,AC=B1C=2,=,因为B1O⊥平面ABC,所以==,设B到平面AB1D的距离是d,则==d,得B到平面AB1D的距离d=.…点评:本题考查平面与平面垂直的证明,考查三棱锥的体积,解题时要认真审题,注意空间思维能力的合理运用.19.如图,四棱锥S﹣ABCD的底面是边长为1的菱形,其中∠DAB=60°,SD垂直于底面ABCD,;(1)求四棱锥S﹣ABCD的体积;(2)设棱SA的中点为M,求异面直线DM与SB所成角的大小.参考答案:【考点】异面直线及其所成的角;棱柱、棱锥、棱台的体积.【分析】(1)求出BD=1,AC=,SD=,由此能求出四棱锥S﹣ABCD的体积.(2)取BC中点E,以D为原点,DA为x轴,DE为y轴,DS为z轴,建立空间直角坐标系,利用向量法能求出异面直线DM与SB所成角.【解答】解:(1)∵四棱锥S﹣ABCD的底面是边长为1的菱形,其中∠DAB=60°,SD垂直于底面ABCD,,∴BD=1,AC==,SD==,S菱形ABCD===,∴四棱锥S﹣ABCD的体积V===.(2)取BC中点E,以D为原点,DA为x轴,DE为y轴,DS为z轴,建立空间直角坐标系,A(1,0,0),S(0,0,),M(),B(,,0),=(),=(,﹣),设异面直线DM与SB所成角为θ,则cosθ===,,∴异面直线DM与SB所成角为.20.已知函数(且)(1)若f(x)在定义域内单调递增,求实数a的取值范围;(2)若f(x)有两个不同的极值点,记过点,的直线的斜率为k,求证:.参考答案:(1)(2)证明见解析【分析】(1)由在上恒成立,再转化为求函数最值.(2)由(1)知时函数有两个极值点,,不妨设,从而有,求出,并凑配出,这样只要证明,再利用函数在单调性可证明.【详解】解:定义域,由在定义域内单调递增,等价于对任意,都有,即恒成立,而,故,又,所以.(2)定义域,设,其判别式,当时,由(1)得由在定义域内单调递增,无极值点,当时,,两根为,,当时,上;当时,;当时,.故在单调递增,在单调递减.即是函数的极值点,不妨设,则且.,所以,而,而且得,故,所以,.设,(),而,所以在上单调递增,所以,而,故.【点睛】本题考查用导数研究函数的单调性,用导数研究函数极值点的问题,解题时需确定存在两个极值点的条件,极值点的关系,以便转化为一元函数,再由函数的知识获得证明.21.(本题满分12分)如图,为圆的直径,点、在圆上,,矩形所在的平面与圆所在的平面互相垂直.已知,.(Ⅰ)求证:平面平面;(Ⅱ)当的长为何值时,平面与平面所成的锐二面角的大小为?
参考答案:解:(Ⅰ)证明:平面平面,,平面平面=,∴平面.平面,∴,又为圆的直径,∴,∴平面.平面,∴平面平面.
…………5分(Ⅱ)设中点为,以为坐标原点,、、方向分别为轴、轴、轴方向建立空间直角坐标系(如图).设,则点的坐标为,,又,
…………7分设平面的法向量为,则,.即
令,解得.
………………9分由(I)可知平面,取平面的一个法向量为.,即,解得,即时,平面与平面所成的锐二面角的大小为.
………………12分略22.(14分)设函数R)在其图象上一点A处切线的斜率为-1.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数f(x)在区间(b-1,b)内的极值.参考答案:解析:(Ⅰ)解:函数的导数,
--------2分
由题意,得,
所以,
故;
-----------5分(Ⅱ)解:由(Ⅰ)知,
由,得x=1,或x=3.
x变化时,的变化如情况下表:
13
0
-
0
+
极大值极小值0
----------8分所以,当b1或时,函数无
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字化营销在零售行业中的应用
- 2025年全球及中国虚拟购物平台行业头部企业市场占有率及排名调研报告
- 2025-2030全球长焊颈法兰行业调研及趋势分析报告
- 2025-2030全球碳纤维管状编织物行业调研及趋势分析报告
- 2025-2030全球集成存储解决方案行业调研及趋势分析报告
- 思想道德修养与法律基础
- 罗湖区政府投资项目代建合同范本
- 水电专业承包合同
- 政府采购项目的采购合同
- 大型高炮广告牌制作合同
- pcn培训培训课件
- 山西省晋中市2023-2024学年高一上学期期末考试 数学 含解析
- 过错方财产自愿转让协议书(2篇)
- 监理专题安全例会纪要(3篇)
- 牧场物语-矿石镇的伙伴们-完全攻略
- ISO 22003-1:2022《食品安全-第 1 部分:食品安全管理体系 审核与认证机构要求》中文版(机翻)
- 护理部工作总结
- 农业生产质量安全风险评估与监控方案
- 人教版六年级上册解方程练习300道及答案
- 2017年湖北省黄冈市中考语文(有解析)
- 2024年广东省高考地理真题(解析版)
评论
0/150
提交评论