广东省佛山市南海第一高级中学2023年高一数学文月考试卷含解析_第1页
广东省佛山市南海第一高级中学2023年高一数学文月考试卷含解析_第2页
广东省佛山市南海第一高级中学2023年高一数学文月考试卷含解析_第3页
广东省佛山市南海第一高级中学2023年高一数学文月考试卷含解析_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省佛山市南海第一高级中学2023年高一数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数上的最大值和最小值之差为,则值为(

A.2或 B.2或4 C.或4 D.2参考答案:A2.若点A(x,1),B(2,y)均在第一象限,且?=1,则+的最小值为()A.2 B.4 C.8 D.10参考答案:C【考点】7F:基本不等式;9R:平面向量数量积的运算.【分析】点A(x,1),B(2,y)均在第一象限,且?=1,可得x,y>0,∴2x+y=1.可得+=(2x+y)=4+,再利用基本不等式的性质即可得出.【解答】解:∵点A(x,1),B(2,y)均在第一象限,且?=1,∴x,y>0,∴2x+y=1.则+=(2x+y)=4+≥4+2=8.故选:C.3.已知集合,集合,则

)A、{1,2,3}

B、{1,4}

C、{1}

D、参考答案:C略4.在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x﹣y,x+y),则A中的元素(﹣1,2)在集合B中的像()A.(﹣1,﹣3) B.(1,3) C.(3,1) D.(﹣3,1)参考答案:D【考点】映射.【分析】根据已知中映射f:A→B的对应法则,f:(x,y)→(x﹣y,x+y),将A中元素(﹣1,2)代入对应法则,即可得到答案.【解答】解:由映射的对应法则f:(x,y)→(x﹣y,x+y),故A中元素(﹣1,2)在B中对应的元素为(﹣1﹣2,﹣1+2)即(﹣3,1)故选D5.若非空集合A={x|2a+1£x£3a-5},B={x|3£x£22},则能使AíB,成立的所有a的集合是(

)A

{a|1£a£9}

B

{a|6£a£9}

C

{a|a£9}

D

?参考答案:B6.直线与圆交于两点,若,则实数的取值范围是(

)A.

B.

C.

D.参考答案:A略7.等比数列前项和,为等差数列,,则的值为(

)A.7

B.8

C.15

D.16参考答案:C8.函数的值域是(

)、

、参考答案:D9.在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,,则(

)A.a>b

B.a<b

C.a=b

D.a与b的大小关系不能确定参考答案:A略10.已知是幂函数,则以下结论中正确的一个是()A.在区间上总是增函数. B.的图像总过点.C.的值域一定是实数集R D.一定是奇函数或者偶函数参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.若幂函数y=f(x)的图象经过点(9,),则f(25)的值是______.参考答案:幂函数的图象经过点,设幂函数为常数,,故,故答案为.12.幂函数的图象过点,则n=_____,若f(a-1)<1,则a的取值范围是________参考答案:-3,a<1或a>2略13.已知点A(2,3),C(0,1),且,则点B的坐标为.参考答案:(﹣2,﹣1)【考点】平面向量的坐标运算.【分析】设出B的坐标,由点的坐标求出所用向量的坐标,代入后即可求得B的坐标.【解答】解:设B(x,y),由A(2,3),C(0,1),所以,又,所以(x﹣2,y﹣3)=﹣2(﹣x,1﹣y)即,解得.所以B(﹣2,﹣1).故答案为(﹣2,﹣1).14.若两直线2x+y+2=0与ax+4y﹣2=0互相垂直,则实数a=.参考答案:﹣8【考点】直线的一般式方程与直线的垂直关系.【分析】先分别求出两条直线的斜率,再利用两条直线垂直的充要条件是斜率乘积等于﹣1,即可求出答案.【解答】解:∵直线2x+y+2=0的斜率,直线ax+4y﹣2=0的斜率,且两直线2x+y+2=0与ax+4y﹣2=0互相垂直,∴k1k2=﹣1,∴,解得a=﹣8.故答案为﹣8.【点评】理解在两条直线的斜率都存在的条件下,两条直线垂直的充要条件是斜率乘积等于﹣1是解题的关键.15.等差数列中,则_________。参考答案:

解析:16.已知实数x、y满足

,则的取值范围是__________;

参考答案:略17.已知向量与的夹角为120,且则参考答案:-4略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)春节是旅游消费旺季,某大型商场通过对春节前后20天的调查,得到部分日经济收入Q与这20天中的第x天(x∈N+)的部分数据如表:天数x(天)3579111315日经济收入Q(万元)154180198208210204190(1)根据表中数据,结合函数图象的性质,从下列函数模型中选取一个最恰当的函数模型描述Q与x的变化关系,只需说明理由,不用证明.①Q=ax+b,②Q=﹣x2+ax+b,③Q=ax+b,④Q=b+logax.(2)结合表中的数据,根据你选择的函数模型,求出该函数的解析式,并确定日经济收入最高的是第几天;并求出这个最高值.参考答案:【考点】函数模型的选择与应用.【分析】(1)由提供的数据知道,描述宾馆日经济收入Q与天数的变化关系的函数不可能为常数函数,也不可能是单调函数,故选取二次函数Q=﹣x2+ax+b进行描述,将(3,154)、(5,180)代入Q=﹣x2+ax+b,代入Q,即得函数解析式;(2)由二次函数的图象与性质,利用配方法可求取最值.【解答】解:(1)由提供的数据知道,描述宾馆日经济收入Q与天数的变化关系的函数不可能为常数函数,从而用四个中的任意一个进行描述时都应有,而Q=at+b,Q=ax+b,Q=b+logax三个函数均为单调函数,这与表格所提供的数据不符合,∴选取二次函数进行描述最恰当;将(3,154)、(5,180)代入Q=﹣x2+ax+b,可得,解得a=21,b=100.∴Q=﹣x2+21x+100,(1≤x≤20,x∈N*);(2)Q=﹣x2+21x+100=﹣(t﹣)2+,∵1≤x≤20,x∈N*,∴t=10或11时,Q取得最大值210万元.【点评】本题考查了二次函数模型的应用,考查利用二次函数的图象与性质求函数的最值问题,确定函数模型是关键.19.在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.参考答案:【考点】圆的标准方程;直线与圆相交的性质.【专题】直线与圆.【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA⊥OB建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2)2+t2,解得t=1,故圆C的半径为,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=①,由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.【点评】本题考查圆的方程的求解,考查学生的待定系数法,考查学生的方程思想,直线与圆的相交问题的解决方法和设而不求的思想,考查垂直问题的解决思想,考查学生分析问题解决问题的能力,属于直线与圆的方程的基本题型.20.已知函数有最大值,试求实数的值。参考答案:解析:,对称轴为,当,即时,是函数的递减区间,得与矛盾;当,即时,是函数的递增区间,得;当,即时,得;

21.(本小题满分14分)如图,在三棱锥中,,平面,,分别为,的中点.(1)求证:平面;(2)求证:平面平面.参考答案:(1)在中,分别为的中点………………3分又平面,平面平面…………………7分(2)由条件,平面,平面,即,………………10分由,,又,都在平面内

平面又平面平面平面………………14分22.定义在(﹣∞,0)∪(0,+∞)上的偶函数y=f(x),当x>0时,f(x)=|lgx|.(1)求x<0时f(x)的解析式;(2)若存在四个互不相同的实数a,b,c,d使f(a)=f(b)=f(c)=f(d),求abcd的值.参考答案:【考点】函数奇偶性的性质.【专题】综合题;转化思想;综合法;函数的性质及应用.【分析】(1)根据函数奇偶性的性质,进行求解即可.(2)根据对数函数和对数方程的关系进行求解即可.【解答】解:(1)当x<0时,﹣x>0,f(﹣x)=|lg(﹣x)|,因f(x)是定义在(﹣∞,0)∪(0,+∞)上的偶函数,即f(x)=f(﹣x)=|lg(﹣x)|,所以,当x<0时,f(x)=|lg(﹣x)|.(2)不妨设a<b<c<d,令f(a)=f(b)=f(c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论