广东省佛山市九江初级中学2022年高二数学理月考试题含解析_第1页
广东省佛山市九江初级中学2022年高二数学理月考试题含解析_第2页
广东省佛山市九江初级中学2022年高二数学理月考试题含解析_第3页
广东省佛山市九江初级中学2022年高二数学理月考试题含解析_第4页
广东省佛山市九江初级中学2022年高二数学理月考试题含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省佛山市九江初级中学2022年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是(

) A.(﹣∞,﹣3)∪(0,3) B.(﹣∞,﹣3)∪(3,+∞) C.(﹣3,0)∪(3,+∞) D.(﹣3,0)∪(0,3)参考答案:A考点:利用导数研究函数的单调性;函数奇偶性的性质.专题:函数的性质及应用;导数的概念及应用.分析:构造函数h(x)=f(x)g(x),利用已知可判断出其奇偶性和单调性,进而即可得出不等式的解集.解答: 解:令h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),因此函数h(x)在R上是奇函数.①∵当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0时单调递增,故函数h(x)在R上单调递增.∵h(﹣3)=f(﹣3)g(﹣3)=0,∴h(x)=f(x)g(x)<0=h(﹣3),∴x<﹣3.②当x>0时,函数h(x)在R上是奇函数,可知:h(x)在(0,+∞)上单调递增,且h(3)=﹣h(﹣3)=0,∴h(x)<0,的解集为(0,3).∴不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).故选:A点评:本题考查的知识点是函数的单调性与奇偶性,恰当构造函数,熟练掌握函数的奇偶性单调性是解题的关键2.已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1参考答案:C【考点】双曲线的简单性质.【分析】利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.【解答】解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.故选:C.3.观察下列算式:,,,,,,,,……用你所发现的规律可得的末位数字是()A.2 B.4 C.6 D.8参考答案:D【分析】通过观察可知,末尾数字周期为4,据此确定的末位数字即可.【详解】通过观察可知,末尾数字周期为4,,故的末位数字与末尾数字相同,都是8.故选D.【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.4.如图所示,正方体的棱长为1,分别是棱,的中点,过直线的平面分别与棱、交于,设,,给出以下四个命题:(1)平面平面;(2)当且仅当x=时,四边形的面积最小;(3)四边形周长,是单调函数;(4)四棱锥的体积为常函数;以上命题中假命题的序号为()A.(1)(4)

B.(2)

C.(3)

D.(3)(4)参考答案:C5.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是(

)A.(-3,0)∪(3,+∞)

B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)

D.(-∞,-3)∪(0,3)参考答案:D6.下面几种推理中是演绎推理的序号为(

)A.由金、银、铜、铁可导电,猜想:金属都可导电;B.猜想数列的通项公式为;C.半径为圆的面积,则单位圆的面积;D.由平面直角坐标系中圆的方程为,推测空间直角坐标系中球的方程为.参考答案:C略7.“因为指数函数y=ax是增函数(大前提),而y=是指数函数(小前提),所以y=是增函数(结论)”,上面推理的错误是()A.大前提错导致结论错B.小前提错导致结论错C.推理形式错导致结论错D.大前提和小前提错都导致结论错参考答案:A

y=ax是增函数这个大前提是错误的,从而导致结论错.8.在的展开式中的常数项是()A.7 B.﹣7 C.28 D.﹣28参考答案:A【考点】DB:二项式系数的性质.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求出展开式的常数项.【解答】解:展开式的通项为令故选A【点评】本题考查利用二项展开式的通项公式解决展开式的特定项问题,属于基础题.9.记I为虚数集,设,.则下列类比所得的结论正确的是(

)A.由,类比得B.由,类比得C.由,类比得D.由,类比得参考答案:C选项A没有进行类比,故选项A错误;选项B中取不大于,故选项B错误;选项D中取,但是均为虚数没办法比较大小,故选项D错误,综上正确答案为C.【点睛】本题考查复数及其性质、合情推理,涉及类比思想、从特殊到一般思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,属于中等难题.本题可以利用排除法,先排除B,再利用特例法取不大于,排除B,再取,但是均为虚数没办法比较大小,排除D,可得正确选项为C.10.设是抛物线的焦点,点是抛物线与双曲线的一条渐近线的一个公共点,且轴,则双曲线的离心率为(

)A.2

B.

C.

D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.甲队a1,a2,a3,a4四人与乙队b1,b2,b3,b4抽签进行4场乒乓球单打对抗赛,抽到ai对bi(i=1,2,3,,4)对打的概率为______参考答案:12.已知椭圆的左、右焦点分别为F1,F2.P是椭圆上一点,△PF1F2是以PF1为底边的等腰三角形,若0°<∠PF1F2<60°则该椭圆的离心率的取值范围是

.参考答案:(,)【考点】椭圆的简单性质.【专题】计算题;压轴题.【分析】由题意可得PF2=F1F2=2c,再由椭圆的定义可得PF1=2a﹣2c.设∠PF2F1=θ,则<θ<π,故﹣1<cosθ<,再由cosθ=,求得e的范围.【解答】解:由题意可得PF2=F1F2=2c,再由椭圆的定义可得PF1=2a﹣PF2=2a﹣2c.设∠PF2F1=θ,则

<θ<π,∴﹣1<cosθ<.△PF1F2中,由余弦定理可得

cosθ=,由﹣1<cosθ可得3e2+2e﹣1>0,e>.由cosθ<可得2ac<a2,e=<.综上,<e<,故答案为(,).【点评】本题考查椭圆的定义、标准方程,以及简单性质的应用,得到cosθ=,且﹣1<cosθ<,是解题的关键.13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,若X表示抽到的二等品件数,则_________.参考答案:1.96【分析】判断概率满足的类型,然后求解方差即可【详解】由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,,,则,故答案为1.96【点睛】本题考查二项分布模型的方差问题,属于基础题14.已知函数的图像不经过第四象限,则实数

.参考答案:15.双曲线+=1的离心率,则的值为

.参考答案:16.有下列命题:①双曲线﹣=1与椭圆+y2=1有相同的焦点;②(lnx)′=;③(tanx)′=;④()′=;⑤?x∈R,x2﹣3x+3≠0.其中是真命题的有:.(把你认为正确命题的序号都填上)参考答案:①③⑤【考点】双曲线的简单性质;全称命题;导数的运算;椭圆的简单性质.【专题】计算题.【分析】对于①分别计算双曲线、椭圆中的c2,再根据焦点都在x轴上,可判断;对于②③④直接利用导数公式可判断,对于⑤△<0,故正确.【解答】解:对于①双曲线中c2=25+9=24,椭圆c2=35﹣1=34,且焦点都在x轴上,故正确;对于,故不正确;对于,故正确;对于故不正确;对于⑤△<0,故正确,故答案为①③⑤【点评】本题真命题的个数的判断,必须一一进行验证,属于基础题.17.已知中,三个内角A,B,C的对边分别为.若的面积为S,且等于▲.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆C的圆心为(1,1),直线与圆C相切。(1)求圆C的标准方程;(2)若直线过点(2,3),且被圆C所截得的弦长为2,求直线的方程。参考答案:(1)(2)或19.设函数g(x)=x2﹣2x+1+mlnx,(m∈R).(1)当m=1时,求函数y=g(x)在点(1,0)处的切线方程;(2)当m=﹣12时,求f(x)的极小值;(3)若函数y=g(x)在x∈(,+∞)上的两个不同的数a,b(a<b)处取得极值,记{x}表示大于x的最小整数,求{g(a)}﹣{g(b)}的值(ln2≈0.6931,ln3≈1.0986).参考答案:【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(1)把m=1代入函数解析式,求得导函数,得到切线的斜率,则切线方程可求;(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极小值即可;(3)根据函数的单调性得到函数y=g(x)在x∈(,+∞)上有两个极值点的m的范围,由a,b为方程2x2﹣2x+m=0的两相异正根,及根与系数关系,得到a,b的范围,把m用a(或b)表示,得到g(a)(或g(b)),求导得到g(b)的取值范围,进一步求得{g(a)}(或{g(b)}),则答案可求.【解答】解:(1)函数y=g(x)=x2﹣2x+1+mlnx,g′(x)=2x﹣2+,k=g′(1)=1,则切线方程为y=x﹣1,故所求切线方程为x﹣y﹣1=0;(2)m=﹣12时,g(x)=)=x2﹣2x+1﹣12lnx,(x>0),g′(x)=2x﹣2﹣=,令g′(x)>0,解得:x>3,令g′(x)<0,解得:0<x<3,故g(x)在(0,3)递减,在(3,+∞)递增,故g(x)极小值=g(3)=4﹣12ln3;(3)函数y=g(x)的定义域为(0,+∞),g′(x)=2x﹣2+=,令g′(x)=0并结合定义域得2x2﹣2x+m>0.①当△≤0,即m≥时,g′(x)≥0,则函数g(x)的增区间为(0,+∞);②当△>0且m>0,即0<m<时,函数g(x)的增区间为(0,),(,+∞);③当△>0且m≤0,即m≤0时,函数g(x)的增区间为(,+∞);故得0<m<时,a,b为方程2x2﹣2x+m=0的两相异正根,<b<,<a<,又由2b2﹣2b+m=0,得m=﹣2b2+2b,∴g(b)=b2﹣2b+1+mlnb=b2﹣2b+1+(﹣2b2+2b)lnb,b∈(,),g′(b)=2b﹣2+(﹣4b+2)lnb+2﹣2b=﹣4(b﹣)lnb,当b∈(,)时,g′(b)>0,即函数g(b)是(,)上的增函数.故g(b)的取值范围是(,),则{g(b)}=0.同理可求得g(a)的取值范围是(,),则{g(a)}=0或{g(a)}=1.∴{g(a)}﹣{g(b)}=0或1.20.已知椭圆C的中心在原点,焦点在x轴上,离心率为,过椭圆C上一点P(2,1)作x轴的垂线,垂足为Q.(Ⅰ)求椭圆C的方程;(Ⅱ)过点Q的直线l交椭圆C于点A,B,且3+=,求直线l的方程.参考答案:【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)设椭圆C的方程为+=1(a>b>0),由题意得=,+=1,a2=b2+c2.解出即可得出;(Ⅱ)由题意得点Q(2,0),设直线方程为x=ty+2(t≠0),A(x1,y1),B(x2,y2),将直线x=ty+2(t≠0),代入椭圆方程得到(2+t2)y2+4ty﹣2=0,利用向量的坐标运算性质、一元二次方程的根与系数的关系即可得出.【解答】解:(Ⅰ)设椭圆C的方程为+=1(a>b>0),由题意得=,+=1,a2=b2+c2.解得a2=6,b2=c2=3,则椭圆C:==1.(Ⅱ)由题意得点Q(2,0),设直线方程为x=ty+2(t≠0),A(x1,y1),B(x2,y2),则=(x1﹣2,y1),=(x2﹣2,y2),由3+=,得3y1+y2=0,y1+y2=﹣2y1,y1y2=﹣3,得到=﹣(*)将直线x=ty+2(t≠0),代入椭圆方程得到(2+t2)y2+4ty﹣2=0,∴y1+y2=,y1y2=,代入(*)式,解得:t2=,∴直线l的方程为:y=±(x﹣2).21.已知实数满足且,设函数(Ⅰ)当时,求f(x)的极小值;(Ⅱ)若函数()的极小值点与f(x)的极小值点相同.求证:g(x)的极大值小于等于.参考答案:(Ⅰ)当a=2时,f′(x)=x2-3x+2=(x-1)(x-2).列表如下:所以,f(x)极小值为f(2)=.(Ⅱ)f′(x)=x2-(a+1)x+a=(x-1)(x-a).g′(x)=3x2+2bx-(2b+4)+=.令p(x)=3x2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论